351
Views
0
CrossRef citations to date
0
Altmetric
Pathology and parasitology

Deformed wing virus in bee bread: infectivity and thermal inactivation

, , , , , & ORCID Icon show all
Pages 711-720 | Received 21 Jun 2022, Accepted 29 Jan 2024, Published online: 10 Jun 2024

References

  • Álvarez Hidalgo, E., Hernandez-Flores, J. L., Andrade Moreno, V. D., Ramos López, M., Romero Gómez, S., Vázquez Cruz, M. A., Torres Ruíz, A., Alvarado Osuna, C., Jones, G. H., Arvizu Hernández, I., Estrada Martínez, A., & Campos-Guillén, J. (2020). Gamma irradiation effects on the microbial content in commercial bee pollen used for bumblebee mass rearing. Radiation Physics and Chemistry, 168, 108511. https://doi.org/10.1016/j.radphyschem.2019.108511
  • Amiri, E., Kryger, P., Meixner, M. D., Strand, M. K., Tarpy, D. R., & Rueppell, O. (2018). Quantitative patterns of vertical transmission of deformed wing virus in honey bees. PLoS One, 13(3), e0195283. https://doi.org/10.1371/journal.pone.0195283
  • Asama, T., Arima, T. H., Gomi, T., Keishi, T., Tani, H., Kimura, Y., Tatefuji, T., & Hashimoto, K. (2015). Lactobacillus kunkeei YB38 from honeybee products enhances IgA production in healthy adults. Journal of Applied Microbiology, 119(3), 818–826. https://doi.org/10.1111/jam.12889
  • Ball, B. (1989). Varroa jacobsoni as a virus vector. In R. Cavalloro (Ed.), Present status of varroatosis in Europe and progress in the varroa mite control (pp. 241–244).
  • Ball, B., & Allen, M. F. (1988). The prevalence of pathogens in honey bee (Apis mellifera) colonies infested with the parasitic mite Varroa jacobsoni. Annals of Applied Biology, 113(2), 237–244. https://doi.org/10.1111/j.1744-7348.1988.tb03300.x
  • Beaurepaire, A., Piot, N., Doublet, V., Antunez, K., Campbell, E., Chantawannakul, P., Chejanovsky, N., Gajda, A., Heerman, M., Panziera, D., Smagghe, G., Yañez, O., de Miranda, J. R., & Dalmon, A. (2020). Diversity and global distribution of viruses of the western honey bee, Apis mellifera. Insects, 11(4), 239. https://doi.org/10.3390/insects11040239
  • Bruckner, S., Steinhauer, N., Engelsma, J., Fauvel, A. M., Kulhanek, K., et al. (2020). 2019–2020 Honey bee colony losses in the United States preliminary results, Bee Informed Partnership.
  • Castagna, A., Benelli, G., Conte, G., Sgherri, C., Signorini, F., Nicolella, C., Ranieri, A., & Canale, A. (2020). Drying techniques and storage: Do they affect the nutritional value of bee-collected pollen? Molecules (Basel, Switzerland), 25(21), 4925. https://doi.org/10.3390/molecules25214925
  • Chen, Y., Evans, J., & Feldlaufer, M. (2006). Horizontal and vertical transmission of viruses in the honey bee, Apis mellifera. Journal of Invertebrate Pathology, 92(3), 152–159. https://doi.org/10.1016/j.jip.2006.03.010
  • Chen, Y., & Siede, R. (2007). Honey bee viruses. Advances in Virus Research, 70, 33–80. https://doi.org/10.1016/S0065-3527(07)70002-7
  • Dainat, B., & Neumann, P. (2013). Clinical signs of deformed wing virus infection are predictive markers for honey bee colony losses. Journal of Invertebrate Pathology, 112(3), 278–280. https://doi.org/10.1016/j.jip.2012.12.009
  • de Mendiburu, F. (2016). Agricolae: Statistical procedures for agricultural research. R Package Version 1.2-4.
  • de Miranda, J., & Genersch, E. (2010). Deformed wing virus. Journal of Invertebrate Pathology, 103 Suppl 1, S48–S61. https://doi.org/10.1016/j.jip.2009.06.012
  • De-Melo, A., Estevinho, M. L., & Almeida-Muradian, L. B. (2015). A diagnosis of the microbiological quality of dehydrated bee-pollen produced in Brazil. Letters in Applied Microbiology, 61(5), 477–483. https://doi.org/10.1111/lam.12480
  • Degrandi-Hoffman, G., Eckholm, B., & Huang, M. (2012). A comparison of bee bread made by Africanized and European honey bees (Apis mellifera) and its effects on hemolymph protein titers. Apidologie, 44(1), 52–63. https://doi.org/10.1007/s13592-012-0154-9
  • Dietemann, V., Ellis, J. D., & Neumann, P. (2013). The COLOSS BEEBOOK Volume II: Standard methods for Apis mellifera pest and pathogen research. International Bee Research Association IBRA.
  • Domínguez-Valhondo, D., Bohoyo Gil, D., Hernández, M. T., & González-Gómez, D. (2011). Influence of the commercial processing and floral origin on bioactive and nutritional properties of honeybee-collected pollen. International Journal of Food Science & Technology, 46(10), 2204–2211. https://doi.org/10.1111/j.1365-2621.2011.02738.x
  • Dranca, F., Ursachi, F., & Oroian, M. (2020). Bee Bread: Physicochemical Characterization and Phenolic Content Extraction Optimization. Foods (Basel, Switzerland), 9(10), 1358. https://doi.org/10.3390/foods9101358
  • Evans, J., Banmeke, O., Palmer-Young, E. C., Chen, Y., & Ryabov, E. V. (2022). Beeporter: Tools for high-throughput analyses of pollinator-virus infections. Molecular Ecology Resources, 22(3), 978–987. https://doi.org/10.1111/1755-0998.13526
  • Filannino, P., Di Cagno, R., Addante, R., Pontonio, E., & Gobbetti, M. (2016). Metabolism of fructophilic lactic acid bacteria isolated from the Apis mellifera L. bee gut: Phenolic acids as external electron acceptors. Applied and Environmental Microbiology, 82(23), 6899–6911. https://doi.org/10.1128/AEM.02194-16
  • Graystock, P., Yates, K., Evison, S. E. F., Darvill, B., Goulson, D., & Hughes, W. H. O. (2013). The Trojan hives: Pollinator pathogens, imported and distributed in bumblebee colonies. Journal of Applied Ecology, 50(5), 1207–1215. https://doi.org/10.1111/1365-2664.12134
  • Graystock, P., Jones, J. C., Pamminger, T., Parkinson, J. F., Norman, V., Blane, E. J., Rothstein, L., Wäckers, F., Goulson, D., & Hughes, W. O. H. (2016). Hygienic food to reduce pathogen risk to bumblebees. Journal of Invertebrate Pathology, 136, 68–73. https://doi.org/10.1016/j.jip.2016.03.007
  • Gregorc, A., Evans, J. D., Scharf, M., & Ellis, J. D. (2012). Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor). Journal of Insect Physiology, 58(8), 1042–1049. https://doi.org/10.1016/j.jinsphys.2012.03.015
  • Haefeker, W. (2021). Pollen supplements and substitutes in the EU feed market: A product/market survey for bees and other animal species. EFSA Supporting Publications, 18(2), 1–43.
  • Highfield, A. C., El Nagar, A., Mackinder, L. C. M., Noël, L. M.-L J., Hall, M. J., Martin, S. J., & Schroeder, D. C. (2009). Deformed wing virus implicated in overwintering honeybee colony losses. Applied and Environmental Microbiology, 75(22), 7212–7220. https://doi.org/10.1128/AEM.02227-09
  • Kostić, A., Milinčić, D. D., Barać, M. B., Ali Shariati, M., Tešić, ŽL., & Pešić, M. B. (2020). The Application of Pollen as a Functional Food and Feed Ingredient-The Present and Perspectives. Biomolecules. Biomolecules, 10(1), 84. https://doi.org/10.3390/biom10010084
  • Kulhanek, K., Steinhauer, N., Rennich, K., Caron, D. M., Sagili, R. R., Pettis, J. S., Ellis, J. D., Wilson, M. E., Wilkes, J. T., Tarpy, D. R., Rose, R., Lee, K., Rangel, J., & vanEngelsdorp, D. (2017). A national survey of managed honey bee 2015–2016 annual colony losses in the USA. Journal of Apicultural Research, 56(4), 328–340. https://doi.org/10.1080/00218839.2017.1344496
  • Locke, B., Semberg, E., Forsgren, E., & de Miranda, J. R. (2017). Persistence of subclinical deformed wing virus infections in honeybees following Varroa mite removal and a bee population turnover. PLoS One, 12(7), e0180910. https://doi.org/10.1371/journal.pone.0180910
  • Martin, S. J., Highfield, A. C., Brettell, L., Villalobos, E. M., Budge, G. E., Powell, M., Nikaido, S., & Schroeder, D. C. (2012). Global honey bee viral landscape altered by a parasitic mite. Science (New York, N.Y.), 336(6086), 1304–1306. https://doi.org/10.1126/science.1220941
  • Mazzei, M., Carrozza, M. L., Luisi, E., Forzan, M., Giusti, M., Sagona, S., Tolari, F., & Felicioli, A. (2014). Infectivity of DWV associated to flower pollen: Experimental evidence of a horizontal transmission route. PLoS One, 9(11), e113448. https://doi.org/10.1371/journal.pone.0113448
  • McMenamin, A., Parekh, F., Lawrence, V., & Flenniken, M. L. (2021). Investigating virus-host interactions in cultured primary honey bee cells. Insects, 12(7), 653. https://doi.org/10.3390/insects12070653
  • Meeus, I., Mosallanejad, H., Niu, J., de Graaf, D. C., Wäckers, F., & Smagghe, G. (2014). Gamma irradiation of pollen and eradication of Israeli acute paralysis virus. Journal of Invertebrate Pathology, 121, 74–77. https://doi.org/10.1016/j.jip.2014.06.012
  • Möckel, N., Gisder, S., & Genersch, E. (2011). Horizontal transmission of deformed wing virus: Pathological consequences in adult bees (Apis mellifera) depend on the transmission route. The Journal of General Virology, 92(Pt 2), 370–377. https://doi.org/10.1099/vir.0.025940-0
  • Moreno Galarza, L. (2012). Aislamiento y Selección de Lactobacillus sp con potencial probiótico a partir de pan de abejas (isolation and selection of Lactobacillus sp with probiotic potential from bee bread). Facultad de Ciencias Universidad Nacional de Colombia. Master in Microbiology Sciences (pp. 1–93).
  • Neveling, D., Endo, A., & Dicks, L. M. (2012). Fructophilic Lactobacillus kunkeei and Lactobacillus brevis isolated from fresh flowers, bees and bee-hives. Current Microbiology, 65(5), 507–515. https://doi.org/10.1007/s00284-012-0186-4
  • Posada-Florez, F., Lamas, Z. S., Hawthorne, D. J., Chen, Y., Evans, J. D., & Ryabov, E. V. (2021). Pupal cannibalism by worker honey bees contributes to the spread of deformed wing virus. Scientific Reports, 11(1), 8989. https://doi.org/10.1038/s41598-021-88649-y
  • Roth, M., Wilson, J. M., Tignor, K. R., & Gross, A. D. (2020). Biology and management of Varroa destructor (Mesostigmata: Varroidae) in Apis mellifera (Hymenoptera: Apidae) colonies. Journal of Integrated Pest Management, 11(1), 1. https://doi.org/10.1093/jipm/pmz036
  • Ryabov, E., Childers, A. K., Lopez, D., Grubbs, K., Posada-Florez, F., Weaver, D., Girten, W., vanEngelsdorp, D., Chen, Y., & Evans, J. D. (2019). Dynamic evolution in the key honey bee pathogen deformed wing virus: Novel insights into virulence and competition using reverse genetics. PLoS Biology, 17(10), e3000502. https://doi.org/10.1371/journal.pbio.3000502
  • Ryabov, E., Fannon, J. M., Moore, J. D., Wood, G. R., & Evans, D. J. (2016). The Iflaviruses Sacbrood virus and deformed wing virus evoke different transcriptional responses in the honeybee which may facilitate their horizontal or vertical transmission. PeerJ, 4, e1591. https://doi.org/10.7717/peerj.1591
  • Schittny, D., Yañez, O., & Neumann, P. (2020). Honey bee virus transmission via hive products. Veterinary Sciences, 7(3), 96. https://doi.org/10.3390/vetsci7030096
  • Singh, R., Levitt, A. L., Rajotte, E. G., Holmes, E. C., Ostiguy, N., Vanengelsdorp, D., Lipkin, W. I., Depamphilis, C. W., Toth, A. L., & Cox-Foster, D. L. (2010). RNA viruses in hymenopteran pollinators: Evidence of inter-Taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS One, 5(12), e14357. https://doi.org/10.1371/journal.pone.0014357
  • Steinmann, N., Corona, M., Neumann, P., & Dainat, B. (2015). Overwintering is associated with reduced expression of immune genes and higher susceptibility to virus infection in honey bees. PLoS One, 10(6), e0129956. https://doi.org/10.1371/journal.pone.0129956
  • Tentcheva, D., Gauthier, L., Zappulla, N., Dainat, B., Cousserans, F., Colin, M. E., & Bergoin, M. (2004). Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Applied and Environmental Microbiology, 70(12), 7185–7191. https://doi.org/10.1128/AEM.70.12.7185-7191.2004
  • Tulloch, A. (1980). Beeswax—Composition and analysis. Bee World, 61(2), 47–62. https://doi.org/10.1080/0005772X.1980.11097776
  • Yue, C., & Genersch, E. (2005). RT-PCR analysis of deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). The Journal of General Virology, 86(Pt 12), 3419–3424. https://doi.org/10.1099/vir.0.81401-0
  • Yue, C., Schröder, M., Gisder, S., & Genersch, E. (2007). Vertical-transmission routes for deformed wing virus of honeybees (Apis mellifera). The Journal of General Virology, 88(Pt 8), 2329–2336. https://doi.org/10.1099/vir.0.83101-0
  • Zuluaga-Domínguez, C., Serrato-Bermudez, J., & Quicazán, M. (2018). Influence of drying-related operations on microbiological, structural and physicochemical aspects for processing of bee-pollen. Engineering in Agriculture, Environment and Food, 11(2), 57–64. https://doi.org/10.1016/j.eaef.2018.01.003