248
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Examining students’ mathematical modeling competences in video-based modeling tasks

ORCID Icon & ORCID Icon
Pages 336-348 | Received 26 May 2023, Accepted 01 Oct 2023, Published online: 19 Oct 2023

References

  • Alwast, A., & Vorhölter, K. (2022). Measuring pre-service teachers’ noticing competencies within a mathematical modeling context: An analysis of an instrument. Educational Studies in Mathematics, 109(2), 263–285. https://doi.org/10.1007/s10649-021-10102-8
  • Arzarello, F., Ferrara, F., & Robutti, O. (2012). Mathematical modelling with technology: The role of dynamic representations. Teaching Mathematics and İts Applications, 31(1), 20–30. https://doi.org/10.1093/teamat/hrr027
  • Beckschulte, C. (2020). Mathematical modelling with a solution plan: An intervention study about the development of grade 9 students’ modelling competencies. In G. A. Stillman, G. Kaiser & C. E. Lampen (Eds.), Mathematical modelling education and sense-making: International perspectives on the teaching and learning of mathematical modelling (pp 129–138). Springer. https://doi.org/10.1007/978-3-030-37673-4_12
  • Biccard, P. (2010). [An investigation into the development of mathematical modelling competencies of Grade 7 learners] [Doctoral dissertation]. Stellenbosch University Faculty of Education.
  • Biccard, P., & Wessels, D. C. J. (2011). Documenting the development of modelling competencies of grade 7 mathematics students In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 375–383). Cham: Springer. https://doi.org/10.1007/978-94-007-0910-2_37
  • Blum, W., & Leibb, D. (2007). How do students and teachers deal with modeling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modeling (ICTMA 12): Education, engineering and economics (pp. 222–231). Horwood Publishing.
  • Blomhøj, M. (1993). Modelling of dynamical systems at O-level. In J. de Lange, C. Keitel, I. Huntley, & M. Niss (Eds.), Innovation in mathematics education by modelling and applications (pp. 257–268). Ellis Horwood.
  • Brand, S. (2014). Effects of a holistic versus an atomistic modelling approach on students’ mathematical modelling competencies. In C. Nicol, P. Liljedahl, S. Oesterle, & D. Allan (Eds.), Proceedings of the joint meeting of PME 38 and PME-NA 36 (pp. 185–191). PME.
  • Christou, C., Mousoulides, N., Pittalis, M., & Pitta-Pantazi, D. (2005). Problem solving and posing in a dynamic geometry environment. The Mathematics Enthusiast, 2(2), 125–143. https://doi.org/10.54870/1551-3440.1029
  • Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry. Theory Into Practice, 39(3), 124–130. https://doi.org/10.1207/s15430421tip3903_2
  • Daher, W. M., & Shahbari, J. A. (2015). Pre-service teachers’ modelling processes through engagement with model eliciting activities with a technological tool. International Journal of Science and Mathematics Education, 13(S1), 25–46. https://doi.org/10.1007/s10763-013-9464-2
  • Daher, W. M. (2021). Middle school students’ motivation in solving modelling activities with technology. Eurasia Journal of Mathematics, Science and Technology Education, 17(9), em1999. https://doi.org/10.29333/ejmste/11127
  • Drijvers, P., Ball, L., Barzel, B., Heid, M. K., Cao, Y., & Maschietto, M. (2016). Uses of technology in lower secondary mathematics education. Springer.
  • Durandt, R., & Lautenbach, G. (2020). Strategic support to students’ competency development in the mathematical modelling process: A qualitative study. Perspectives in Education, 38(1), 211–223. https://doi.org/10.18820/2519593X/pie.v38i1.15
  • English, L. D. (2009). Promoting interdisciplinarity through mathematical modelling. ZDM, 41(1–2), 161–181. https://doi.org/10.1007/s11858-008-0106-z
  • English, L. D., & Watters, J. J. (2004). Mathematical modelling with young children. In M. Johnsen Hoines & A. Berit Fuglestad (Eds.), Proceedings of the 28th annual conference of the International Group for the Psychology of Mathematics Education (pp. 335–342). Bergen: Bergen University College.
  • Fakhrunisa, F., & Hasanah, A. (2020). Students’ algebraic thinking: A study of mathematical modelling competencies. Journal of Physics: Conference Series, 1521(3), 032077. https://doi.org/10.1088/1742-6596/1521/3/032077
  • Ferrando, I., & Albarracín, L. (2021). Students from grade 2 to grade 10 solving a Fermi problem: Analysis of emerging models. Mathematics Education Research Journal, 33(1), 61–78. https://doi.org/10.1007/s13394-019-00292-z
  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM, 38(2), 143–162. https://doi.org/10.1007/BF02655886
  • Greefrath, G., Siller, H. S., & Ludwig, M. (2017). Modelling problems in German grammar school leaving examinations. In T. Dooley & G. Gueudet (Eds.). Proceedings of CERME 10 (pp. 932–939).
  • Greefrath, G., & Vorhölter, K. (2016). Teaching and learning mathematical modelling: Approaches and developments from German speaking countries. Springer. https://doi.org/10.1007/978-3-319-45004-9_1
  • Greefrath, G., & Vos, P. (2021). Video-based word problems or modelling projects—Classifying ICT-based modelling tasks. In F. K. S. Leung, G. A. Stillman, G. Kaiser, & K. L. Wong (Eds.), Mathematical modelling education in east and west. International perspectives on the teaching and learning of mathematical modelling (pp. 489–499). Springer. https://doi.org/10.1007/978-3-030-66996-6_41
  • Grünewald, S. (2012, July). Acquirement of modelling competencies – First results of an empirical comparison of the effectiveness of a holistic respectively an atomistic approach to the development of (metacognitive) modelling competencies of students. Paper presented at the meeting of the 12 International Congress on Mathematical Education, Seoul, South Korea.
  • Jankvist, U. T., & Niss, M. (2019). Upper secondary school students’ difficulties with mathematical modelling. International Journal of Mathematical Education in Science and Technology, 51(4), 1–30. https://doi.org/10.1080/0020739X.2019.1587530
  • Kaiser, G. (2020). Mathematical modelling and applications in education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 553–561). Springer International Publishing. https://doi.org/10.1007/978-3-030-15789-0_101
  • Kenan, A. (2022). [Developing mathematical modeling activities in science education and investigating mathematical modeling competencies of science teachers and teacher candidates] [Doctoral dissertation]. Erzincan Binali Yıldırım University.
  • Leedy, P., & Ormrod, J. (2021). Practical research: Planning and design (12th ed.). Pearson Education.
  • Maaß, K. (2006). What are modelling competencies? ZDM, 38(2), 113–142. https://doi.org/10.1007/BF02655885
  • Maaß, K. (2010). Classification scheme for modelling tasks. Journal für Mathematik-Didaktik, 31(2), 285–311. https://doi.org/10.1007/s13138-010-0010-2
  • Mayring, P. (2014). Qualitative content analysis. Theoretical foundation, basic procedures and software solution. Klagenfurt. Retrieved from http://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173
  • McMillan, J. H., & Schumacher, S. (2006). Research in education: Evidence-based inquiry. Pearson Education.
  • Meyer, D. (n.d.-a). 101questions. Retrieved January 2, 2022, from https://www.101qs.com/3933
  • Meyer, D. (n.d.-b). 101questions. Retrieved January 2, 2022, from https://www.101qs.com/3542
  • Meyer, D. (n.d.-c). 101questions. Retrieved January 2, 2022, from https://mrmeyer.com/threeacts/watertank/
  • Molina-Toro, J. F., Rendón-Mesa, P. A., & Villa-Ochoa, J. (2019). Research trends in digital technologies and modeling in mathematics education. EURASIA Journal of Mathematics, Science and Technology Education, 15(8), em1736. https://doi.org/10.29333/ejmste/108438
  • Mousoulides, N., Pittalis, M., Christou, C., Boytchev, P., Sriraman, B., & Pitta, D. (2007). Mathematical modelling using technology in elementary school. In 8th İnternational Conference on Technology in Mathematics Teaching. University of Hradec Králové.
  • Niss, M., Blum, W., & Galbraith, P. (2007). How to replace the word problems. In W. Blum, P. Galbraith, H-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 3–32). Springer.
  • Schukajlow, S., Kolter, J., & Blum, W. (2015). Scaffolding mathematical modelling with a solution plan. ZDM, 47(7), 1241–1254. https://doi.org/10.1007/s11858-015-0707-2
  • Siller, H.-S., & Greefrath, G. (2010). Mathematical modeling in class regarding to technology. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.). Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education, France (pp. 2136–2145).
  • Siller, H. S., & Greefrath, G. (2020). Modelling tasks in central examinations based on the example of Austria. In G. Stillman, G. Kaiser, & C. Lampen (Eds.), Mathematical modelling education and sense-making. International perspectives on the teaching and learning of mathematical modelling (pp. 383–392). Springer.
  • Stender, P., & Kaiser, G. (2015). Scaffolding in complex modelling situations. ZDM, 47(7), 1255–1267. https://doi.org/10.1007/s11858-015-0741-0
  • Stender, P., Krosanke, N., & Kaiser, G. (2017). Scaffolding complex modelling processes: An in-depth study. In G. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 467–477). Springer.
  • Stohlmann, M. (2012). YouTube incorporated with mathematical modelling activities: Benefits, concerns, and future research opportunities. International Journal for Technology in Mathematics Education, 19(3), 117–124.
  • Toma, J. D. (2006). Approaching rigor in applied qualitative research. In C. F. Conrad & R. C. Serlin (Eds.), The Sage handbook for research in education: Engaging ideas and enriching inquiry (pp. 405–423). Sage Publications, Inc.
  • Tropper, N., Leiss, D., & Hanze, M. (2015). Teachers’ temporary support and worked-out examples as elements of scaffolding in mathematical modeling. ZDM, 47(7), 1225–1240. https://doi.org/10.1007/s11858-015-0718-z
  • Wess, R., Klock, H., Siller, H. S., & Greefrath, G. (2021). Measuring professional competence for the teaching of mathematical modelling: A test instrument. Springer International Publishing. https://doi.org/10.1007/978-3-030-78071-5
  • Walliman, N. (2006). Social research methods (1st ed.). Sage Publications.
  • Williams, C. (2007). Research methods. Journal of Business & Economic Research, 5(3), 65–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.