1,985
Views
1
CrossRef citations to date
0
Altmetric
Learning, Instruction, and Cognition

Differences in High- and Low-Performing Students’ Fraction Learning in the Fourth Grade

References

  • Anselmo, G. A., Yarbrough, J. L., Kovaleski, J. F., & Tran, V. N. (2017). Criterion-related validity of two curriculum-based measures of mathematical skill in relation to reading comprehension in secondary students. Psychology in the Schools, 54(9), 1148–1159. https://doi.org/10.1002/pits.22050
  • Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113(3), 447–455. https://doi.org/10.1016/j.jecp.2012.06.004
  • Behr, M. J., Lesh, R., Post, T. R., & Silver, E. A. (1983). Rational-number concepts. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 91–125). Academic Press.
  • Biddlecomb, B. D. (2002). Numerical knowledge as enabling and constraining fraction knowledge: An example of the reorganization hypothesis. The Journal of Mathematical Behavior, 21(2), 167–190. https://doi.org/10.1016/S0732-3123(02)00117-7
  • Booth, J. L., & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational Psychology, 37(4), 247–253. https://doi.org/10.1016/j.cedpsych.2012.07.001
  • Booth, J. L., Newton, K. J., & Twiss-Garrity, L. K. (2014). The impact of fraction magnitude knowledge on algebra performance and learning. Journal of Experimental Child Psychology, 118(1), 110–118. https://doi.org/10.1016/j.jecp.2013.09.001
  • Boyer, T. W., & Levine, S. C. (2012). Child proportional scaling: Is 1/3 = 2/6 = 3/9 = 4/12? Journal of Experimental Child Psychology, 111(3), 516–533. https://doi.org/10.1016/j.jecp.2011.11.001
  • Bruner, J. S. (1966). Toward a theory of instruction. Belkapp Press.
  • Cutting, C. (2019). Re-thinking fraction instruction in primary school: The case for an alternative approach in the early years. In G. Hine, S. Blackley, & A. Cooke (Eds.), Proceedings of the 42nd annual conference of the mathematics education research group of Australasia (pp. 204–211). MERGA.
  • DAMVAD. (2014). PISA-relatering af de kriterie- baserede nationale test Delrapport 1 – formidling af resultater. https://www.uvm.dk/folkeskolen/elevplaner-nationale-test–trivselsmaaling-og-sprogproever/nationale-test/om-de-nationale-test
  • Danish Ministry of Education. (2015). Forenklede Faelles Mål - Matematik. http://digitalelaereplaner.dk/l%C3%A6replan/danmark/matematik/2015
  • Deno, S. L. (2003). Developments in curriculum-based measurement. The Journal of Special Education, 37(3), 184–192. https://doi.org/10.1177/00224669030370030801
  • DeWolf, M., & Vosniadou, S. (2015). The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction, 37, 39–49. https://doi.org/10.1016/j.learninstruc.2014.07.002
  • DeWolf, M., Bassok, M., & Holyoak, K. J. (2015). From rational numbers to algebra: Separable contributions of decimal magnitude and relational understanding of fractions. Journal of Experimental Child Psychology, 133, 72–84. https://doi.org/10.1016/j.jecp.2015.01.013
  • DeWolf, M., Bassok, M., & Holyoak, K. J. (2016). A set for relational reasoning: Facilitation of algebraic modeling by a fraction task. Journal of Experimental Child Psychology, 152, 351–366. https://doi.org/10.1016/j.jecp.2016.06.016
  • Empson, S. B., Levi, L., & Carpenter, T. P. (2011). Early algebraization. In J. Cai & E. Knuth (Eds.), Early algebraization. (pp. 409–429). Springer-Verlag. https://doi.org/10.1007/978-3-642-17735-4
  • Fazio, L. K., DeWolf, M., & Siegler, R. S. (2016). Strategy use and strategy choice in fraction magnitude comparison. Journal of Experimental Psychology. Learning, Memory, and Cognition, 42(1), 1–16. https://doi.org/10.1037/xlm0000153
  • Hackenberg, A. J., & Tillema, E. S. (2009). Students’ whole number multiplicative concepts: A critical constructive resource for fraction composition schemes. The Journal of Mathematical Behavior, 28(1), 1–18. https://doi.org/10.1016/j.jmathb.2009.04.004
  • Hansen, N., Jordan, N. C., & Rodrigues, J. (2017). Identifying learning difficulties with fractions: A longitudinal study of student growth from third through sixth grade. Contemporary Educational Psychology, 50, 45–59. https://doi.org/10.1016/j.cedpsych.2015.11.002
  • Hansen, N., Jordan, N. C., Fernandez, E., Siegler, R. S., Fuchs, L., Gersten, R., & Micklos, D. (2015). General and math-specific predictors of sixth-graders’ knowledge of fractions. Cognitive Development, 35, 34–49. https://doi.org/10.1016/j.cogdev.2015.02.001
  • Hecht, S. A., Close, L., & Santisi, M. (2003). Sources of individual differences in fraction skills. Journal of Experimental Child Psychology, 86(4), 277–302. https://doi.org/10.1016/j.jecp.2003.08.003
  • Jerrim, J., & Vignoles, A. (2016). The link between East Asian “mastery” teaching methods and English children’s mathematics skills. Economics of Education Review, 50, 29–44. https://doi.org/10.1016/j.econedurev.2015.11.003
  • Jordan, N. C., Resnick, I., Rodrigues, J., Hansen, N., & Dyson, N. (2017). Delaware longitudinal study of fraction learning: Implications for helping children with mathematics difficulties. Journal of Learning Disabilities, 50(6), 621–630. https://doi.org/10.1177/0022219416662033
  • Kainulainen, M., McMullen, J., & Lehtinen, E. (2017). Early developmental trajectories toward concepts of rational numbers. Cognition and Instruction, 35(1), 4–19. https://doi.org/10.1080/07370008.2016.1251287
  • Lamon, S. J. (2012). Teaching fractions and ratios for understanding (3rd ed.). Routledge. https://doi.org/10.4324/9781410617132
  • Liang, J. H., Heckman, P. E., & Abedi, J. (2018). Prior year’s predictors of eighth-grade algebra achievement. Journal of Advanced Academics, 29(3), 249–269. https://doi.org/10.1177/1932202X18770172
  • McMullen, J., Laakkonen, E., Hannula-Sormunen, M., & Lehtinen, E. (2015). Modeling the developmental trajectories of rational number concept(s). Learning and Instruction, 37, 14–20. https://doi.org/10.1016/j.learninstruc.2013.12.004
  • Mogensen, A., Nielsen, B. L., & Sillasen, M. K. (2015). Processer der forandrer. Mona, 1, 24–48.
  • Möhring, W., Newcombe, N. S., Levine, S. C., & Frick, A. (2016). Spatial proportional reasoning is associated with formal knowledge about fractions. Journal of Cognition and Development, 17(1), 67–84. https://doi.org/10.1080/15248372.2014.996289
  • Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27–52. https://doi.org/10.1207/s15326985ep4001_3
  • Nielsen, B. L., Pontoppidan, B. S., Sillasen, M. K., Mogensen, A., & Nielsen, K. (2013). QUEST: Et storskalaprojekt til udvikling af naturfagsundervisning [QUEST: A large-scale project for the development of science teaching]. Mona, 2, 49–66.
  • R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  • Resnick, I., Jordan, N. C., Hansen, N., Rajan, V., Rodrigues, J., Siegler, R. S., & Fuchs, L. S. (2016). Developmental growth trajectories in understanding of fraction magnitude from fourth through sixth grade. Developmental Psychology, 52(5), 746–757. https://doi.org/10.1037/dev0000102
  • Reynolds, J. M. (2015). Singapore math: A longitudinal study of Singapore math in one school district from 2007 to 2012. ProQuest LLC.
  • Rinne, L. F., Ye, A., & Jordan, N. C. (2017). Development of fraction comparison strategies: A latent transition analysis. Developmental Psychology, 53(4), 713–730. https://doi.org/10.1037/dev0000275
  • Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology. Human Perception and Performance, 36(5), 1227–1238. https://doi.org/10.1037/a0018170
  • Seethaler, P. M., Fuchs, L. S., Star, J. R., & Bryant, J. (2011). The cognitive predictors of computational skill with whole versus rational numbers: An exploratory study. Learning and Individual Differences, 21(5), 536–542. https://doi.org/10.1016/j.lindif.2011.05.002
  • Sidney, P. G., & Alibali, M. W. (2017). Creating a context for learning: Activating children’s whole number knowledge prepares them to understand fraction division. Journal of Numerical Cognition, 3(1), 31–57. https://doi.org/10.5964/jnc.v3i1.71
  • Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. Developmental Science, 19(3), 341–361. https://doi.org/10.1111/desc.12395
  • Siegler, R. S., & Pyke, A. A. (2013). Developmental and individual differences in understanding of fractions. Developmental Psychology, 49(10), 1994–2004. https://doi.org/10.1037/a0031200
  • Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., Susperreguy, M. I., & Chen, M. (2012). Early predictors of high school mathematics achievement. Psychological Science, 23(7), 691–697. https://doi.org/10.1177/0956797612440101
  • Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: The new frontier for theories of numerical development. Trends in Cognitive Sciences, 17(1), 13–19. https://doi.org/10.1016/j.tics.2012.11.004
  • Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273–296. https://doi.org/10.1016/j.cogpsych.2011.03.001
  • Skov, P. R., & Flarup, L. H. (2020). De nationale tests samvariation med karakterer. Delrapport 2: Evalueringen af de nationale test. VIVE.
  • Stecker, P. M., Fuchs, L. S., & Fuchs, D. (2005). Using curriculum-based measurement to improve student achievement: Review of research. Psychology in the Schools, 42(8), 795–819. https://doi.org/10.1002/pits.20113
  • Steffe, L. P., & Olive, J. (2010). Children’s fractional knowledge. Springer US. https://doi.org/10.1017/CBO9781107415324.004
  • Styrelsen for IT og Laering (STIL). (2015). Bilagsnotat til: De nationale tests måleegenskaber. Ministeriet for Børn Undervisning og Ligestilling. https://www.uvm.dk/folkeskolen/elevplaner-nationale-test–trivselsmaaling-og-sprogproever/nationale-test/om-de-nationale-test
  • Sunde, P. B., Jóelsdóttir, L. B., & Pedersen, P. L. (2020). Blokmodellen: En overset repraesentation i dansk matematikundervisning? [The block model: An overlooked representation when teaching mathematics in Denmark?]. MONA – Matematik – Og Naturfagsdidaktik, 2020(2), 23–46. https://tidsskrift.dk/mona/article/view/120783
  • Thompson, P. W., & Saldanha, L. A. (2003). Fractions and multiplicative reasoning. In J. Kilpatrick, G. Martin, & D. Schifter (Eds.), Research companion to the principles and standards for school mathematics (pp. 95–114). National Council of Teachers of Mathematics. https://doi.org/10.1016/j.jmathb.2009.04.004
  • Tian, J., & Siegler, R. S. (2017). Fractions learning in children with mathematics difficulties. Journal of Learning Disabilities, 50(6), 614–620. https://doi.org/10.1177/0022219416662032
  • Tomlinson, C. A., Brighton, C., Hertberg, H., Callahan, C. M., Moon, T. R., Brimijoin, K., Conover, L. A., & Reynolds, T. (2003). Differentiating instruction in response to student readiness, interest, and learning profile in academically diverse classrooms: A review of literature. Journal for the Education of the Gifted, 27(2-3), 119–145. https://doi.org/10.1177/016235320302700203
  • Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 5–13. https://doi.org/10.1016/j.learninstruc.2014.03.002
  • Uribe-Flórez, L. J., & Wilkins, J. L. M. (2017). Manipulative use and elementary school students’ mathematics learning. International Journal of Science and Mathematics Education, 15(8), 1541–1557. https://doi.org/10.1007/s10763-016-9757-3
  • Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students’ understanding of rational numbers and their notation. Cognition and Instruction, 28(2), 181–209. https://doi.org/10.1080/07370001003676603
  • Vamvakoussi, X., Christou, K. P., & Vosniadou, S. (2018). Bridging psychological and educational research on rational number knowledge. Journal of Numerical Cognition, 4(1), 84–106. https://doi.org/10.5964/jnc.v4i1.82
  • Van Dooren, W., Lehtinen, E., & Verschaffel, L. (2015). Unraveling the gap between natural and rational numbers. Learning and Instruction, 37, 1–4. https://doi.org/10.1016/j.learninstruc.2015.01.001
  • Van Hoof, J., Degrande, T., Ceulemans, E., Verschaffel, L., & van Dooren, W. (2018). Towards a mathematically more correct understanding of rational numbers: A longitudinal study with upper elementary school learners. Learning and Individual Differences, 61, 99–108. https://doi.org/10.1016/j.lindif.2017.11.010
  • Ye, A., Resnick, I., Hansen, N., Rodrigues, J., Rinne, L., & Jordan, N. C. (2016). Pathways to fraction learning: Numerical abilities mediate the relation between early cognitive competencies and later fraction knowledge. Journal of Experimental Child Psychology, 152, 242–263. https://doi.org/10.1016/j.jecp.2016.08.001