2,434
Views
2
CrossRef citations to date
0
Altmetric
Articles

Young People’s Pre-Conceptions of the Interactions between Climate Change and Soils – Looking at a Physical Geography Topic from a Climate Change Education Perspective

, , , , , & show all
Pages 51-66 | Received 08 Jun 2021, Accepted 26 Jan 2022, Published online: 30 Mar 2022

References

  • Alewell, C., M. Egli, and K. Meusburger. 2015. An attempt to estimate tolerable soil erosion rates by matching soil formation with denudation in alpine grasslands. Journal of Soils and Sediments 15 (6):1383–99. doi: 10.1007/s11368-014-0920-6.
  • Amelung, W., H.-P. Blume, H. Fleige, R. Horn, E. Kandeler, I. Kögel-Knabner, R. Kretzschmar, K. Stahr, and B.-M. Wilke. 2018. Scheffer/schachtschabel lehrbuch der bodenkunde. Berlin, Heidelberg: Springer.
  • Auer, I., R. Böhm, A. Jurkovic, W. Lipa, A. Orlik, R. Potzmann, W. Schöner, M. Ungersböck, C. Matulla, K. Briffa, et al. 2007. Histalp—Historical instrumental climatological surface time series of the greater alpine region. International Journal of Climatology 27 (1):17–46. doi: 10.1002/joc.1377.
  • Bofferding, L., and M. Kloser. 2015. Middle and high school students’ conceptions of climate change mitigation and adaptation strategies. Environmental Education Research 21 (2):275–94. doi: 10.1080/13504622.2014.888401.
  • Böhm, G., and S. Mader. 1998. Subjektive kausale szenarien globaler umweltveränderungen. Zeitschrift Für Experimentelle Psychologie 45 (4):270–85.
  • Bonekamp, M. 2006. Boden als puffer: Fachliche vorstellungen und schülervorstellungen zu einer zentralen bodenfunktion. Didaktisches Zentrum, Univ.
  • Bojko, O., and C. Kabala. 2017. Organic carbon pools in mountain soils—Sources of variability and predicted changes in relation to climate and land use changes. CATENA 149:209–20. doi: 10.1016/j.catena.2016.09.022.
  • Boon, H. 2010. Climate change? Who knows? A comparison of secondary students and pre-service teachers. Australian Journal of Teacher Education 35 (1):104–20. doi: 10.14221/ajte.2010v35n1.9.
  • Bord, R. J., R. E. O'Connor, and A. Fisher. 2000. In what sense does the public need to understand global climate change? Public Understanding of Science 9 (3/0029;:205–18. doi: 10.1088/0963-6625/9/3/301.
  • Boyes, E., and M. Stanisstreet. 1993. The ‘greenhouse effect’: Children's perceptions of causes, consequences and cures. International Journal of Science Education 15 (5):531–52. doi: 10.1080/0950069930150507.
  • Boyes, E., and M. Stanisstreet. 2012. Environmental education for behaviour change: Which actions should be targeted? International Journal of Science Education 34 (10):1591–614. doi: 10.1080/09500693.2011.584079.
  • Bransford, J. D., A. L. Brown, and R. R. Cocking. 2000. How people learn. Washington, D.C. National Academies Press.
  • Briegel, T. 2017. Diercke – geographie. Gymnasium Bayern, Druck A., ed. Willfried Büttner, Werner Eckert-Schweins, and Bernd Raczkowsky. Braunschweig: Westermann.
  • Briegel, T. 2019. Diercke geographie—Gymnasium bayern. Druck A, ed. Werner Eckert-Schweins and Bernd Raczkowsky. Braunschweig: Westermann: Westermann.
  • Brown, M. H., and R. S. Schwartz. 2009. Connecting photosynthesis and cellular respiration: Preservice teachers' conceptions. Journal of Research in Science Teaching 46 (7):791–812. doi: 10.1002/tea.20287.
  • Callejas Restrepo, M. M., N. Blanco-Portela, Y. Ladino-Ospina, R. N. Tuay Sigua, and K. O. Vargas. 2017. Professional development of university educators in ESD: A study from pedagogical styles. International Journal of Sustainability in Higher Education 18 (5):648–65. doi: 10.1108/IJSHE-02-2016-0031.
  • Carmi, N., S. Arnon, and N. Orion. 2015. Transforming environmental knowledge into behavior: The mediating role of environmental emotions. The Journal of Environmental Education 46 (3):183–201. doi: 10.1080/00958964.2015.1028517.
  • Chang, C.-H., and L. Pascua. 2016. Singapore students' misconceptions of climate change. International Research in Geographical and Environmental Education 25 (1):84–96. doi: 10.1080/10382046.2015.1106206.
  • Chang, C.-H., L. Pascua, and F. Ess. 2018. Closing the “hole in the sky”: The use of refutation-oriented instruction to correct students' climate change misconceptions. Journal of Geography 117 (1):3–16. doi: 10.1080/00221341.2017.1287768.
  • Chew Hung, C. 2014. Climate change education: Knowing, doing and being. Hoboken: Taylor and Francis.
  • Corcoran, P. B., J. P. Weakland, and A. E. J. Wals, eds. 2017. Envisioning futures for environmental and sustainability education. Wageningen: Wageningen Academic Publishers.
  • Corner, A., O. Roberts, S. Chiari, S. Völler, E. S. Mayrhuber, S. Mandl, and K. Monson. 2015. How do young people engage with climate change? The role of knowledge, values, message framing, and trusted communicators. WIREs Climate Change 6 (5):523–34. doi: 10.1002/wcc.353.
  • Cox, M., J. Elen, and A. Steegen. 2020. Fostering students' geographic systems thinking by enriching causal diagrams with scale. Results of an intervention study. International Research in Geographical and Environmental Education 29 (2):112–28. doi: 10.1080/10382046.2019.1661573.
  • D'Avanzo, C. 2003. Application of research on learning to college teaching: Ecological examples. BioScience 53 (11):1121–8. doi: 10.1641/0006-3568(2003)053[1121:AOROLT]2.0.CO;2.
  • Davidson, E. A., and I. A. Janssens. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440 (7081):165–73. doi: 10.1038/nature04514.
  • Demirkaya, H. 2009. Prospective primary school teachers’ understanding of the environment: A qualitative study. European Journal of Educational Studies 1 (1):75–82.
  • Deyn, G. B., de, J. H. C. Cornelissen, and R. D. Bardgett. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11 (5):516–31. doi: 10.1111/j.1461-0248.2008.01164.x.
  • Dittmann, S. 2009. Bodenversalzung: Fachliche vorstellungen und schülervorstellungen zu einem geographischen themenklassiker. Diz.
  • Döringer, A. 2017. Seydlitz geographie für das gymnasium in Bayernn 5, ed. Jochen Laske. Braunschweig: Schroedel Westermann.
  • Dove, J. 1996. Student teacher understanding of the greenhouse effect, ozone layer depletion and acid rain. Environmental Education Research 2 (1):89–100. doi: 10.1080/1350462960020108.
  • Drieling, K. 2015. Schülervorstellungen über Boden und Bodengefährdung: Ein Beitrag zur geographiedidaktischen Rekonstruktion. PhD diss. Ludwigsburg, Pädagogische Hochschule.
  • Egli, M., and J. Poulenard. 2016. Soils of mountainous landscapes. In International encyclopedia of geography: People, the earth, environment and technology, ed. D. Richardson, N. Castree, M. F. Goodchild, A. Kobayashi, W. Liu and R. A. Marston, 1–10. Oxford, UK: John Wiley & Sons, Ltd.
  • Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, et al. 2021., Imagery basemap.
  • FAO. 2007. Land evaluation: Towards a revised framework. http://www.fao.org/nr/lman/docs/lman_070601_en.pdf.
  • FAO. 2015. 2015 international year of soils – Healthy soils for a healthy life. Accessed September 3, 2020. http://www.fao.org/soils-2015/en/.
  • FAO. 2016. Soils: Key to unlocking the potential of mitigating and adapting to climate change. Accessed March 20, 2020. http://www.fao.org/documents/card/en/c/50c32100-1a82-4375-9342-7102eb526db2/.
  • Feola, G. 2015. Societal transformation in response to global environmental change: A review of emerging concepts. Ambio 44 (5):376–90. doi: 10.1007/s13280-014-0582-z.
  • Flath, M., and E. Rudyk, eds. 2017. Unsere erde: Bayern, gymnasium 7. Berlin: Cornelsen.
  • France, D., and M. Haigh. 2018. Fieldwork@40: Fieldwork in geography higher education. Journal of Geography in Higher Education 42 (4):1–17. doi: 10.1080/03098265.2018.1515187.
  • Francek, M. 2013. A compilation and review of over 500 geoscience misconceptions. International Journal of Science Education 35 (1):31–64. doi: 10.1080/09500693.2012.736644.
  • Frick, J., F. G. Kaiser, and M. Wilson. 2004. Environmental knowledge and conservation behavior: Exploring prevalence and structure in a representative sample. Personality and Individual Differences 37 (8):1597–613. doi: 10.1016/j.paid.2004.02.015.
  • Geitner, C., M. Freppaz, J. Lesjak, E. Schaber, S. Stanchi, M. d'Amico, and B. Vrščaj. 2019. Soil ecosystem services in the alps: An introduction for decision-makers, ed. Borut Vrščaj. Ljubljana: Agricultural Institute of Slovenia.
  • Gentili, P. L. 2019. Designing and teaching a novel interdisciplinary course on complex systems to prepare new generations to address 21st-century challenges. Journal of Chemical Education 96 (12):2704–9. doi: 10.1021/acs.jchemed.9b00027.
  • Gifford, R. 2011. The dragons of inaction: Psychological barriers that limit climate change mitigation and adaptation. The American Psychologist 66 (4):290–302. doi: 10.1037/a0023566.
  • Gobiet, A., S. Kotlarski, M. Beniston, G. Heinrich, J. Rajczak, and M. Stoffel. 2014. 21st century climate change in the European Alps—A review. The Science of the Total Environment 493:1138–51. doi: 10.1016/j.scitotenv.2013.07.050.
  • Groffman, P. M., C. T. Driscoll, T. J. Fahey, J. P. Hardy, R. D. Fitzhugh, and G. L. Tierney. 2001. Colder soils in a warmer world: A snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56 (2):135–50. doi: 10.1023/A:1013039830323.
  • Gropengießer, H. 1997. Oldenburg, Universität, Dissertation 1997, Carl-von-Ossietzky-Universität Oldenburg. Didaktische Rekonstruktion des "Sehens": Wissenschaftliche Theorien und die Sicht der Schüler in der Perspektive der Vermittlung.
  • Gu, Z., L. Gu, R. Eils, M. Schlesner, and B. Brors. 2014. Circlize implements and enhances circular visualization in R. Bioinformatics (Oxford, England) 30 (19):2811–2. doi: 10.1093/bioinformatics/btu393.
  • Gubler, M., A. Brügger, and M. Eyer. 2019. Adolescents’ perceptions of the psychological distance to climate change, its relevance for building concern about it, and the potential for education. In Filho, Hemstock (hg.) 2019 – climate change and the role, ed. W. L. Filho and S. L. Hemstock, 129–47. Switzerland: Springer.
  • Habron, G., L. Goralnik, and L. Thorp. 2012. Embracing the learning paradigm to foster systems thinking. International Journal of Sustainability in Higher Education 13 (4):378–93. doi: 10.1108/14676371211262326.
  • Happs, J. C. 1984. Soil genesis and development: Views held by New Zealand students. Journal of Geography 83 (4):177–80. doi: 10.1080/00221348408980498.
  • Harker-Schuch, I., and C. Bugge-Henriksen. 2013. Opinions and knowledge about climate change science in high school students. Ambio 42 (6):755–66. doi: 10.1007/s13280-013-0388-4.
  • Hayhoe, D. 2013. Surprising facts about soils, students and teachers! A survey of educational research and resources. In Sustainable agriculture reviews: Volume 12, ed. E. Lichtfouse, vol. 12, 1–40. Netherlands: Springer.
  • Heng, C. K., M. Karpudewan, and K. Chandrakesan. 2017. Climate change activities: A possible means to promote understanding and reduce misconceptions about acid rain, global warming, greenhouse effect and ozone layer depletion among secondary school students. In Overcoming students' misconceptions in science, ed. M. Karpudewan, A. N. Md Zain and A. L. Chandrasegaran, 323–44. Singapore: Springer.
  • Herrington, J., T. C. Reeves, and R. Oliver. 2014. Authentic learning environments. In Handbook of research on educational communications and technology, ed. J. M. Spector, M. D. Merrill, J. Elen and M. J. Bishop, 401–12. 4th ed. Dordrecht: Springer.
  • Hock, R., Rasul, G. B. C. Adler, S. Cáceres, Y. Gruber, M. Hirabayashi, A. Jackson, S. Kääb, S. Kang, Kutuzov, et al. 2019. High mountain areas. In IPCC special report on the ocean and cryosphere in a changing climate, ed. H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai and A. Okem, et al., 131–202. Geneva, Switzerland: World Meteorological Organization.
  • Hoffmann, U., T. Hoffmann, G. Jurasinski, S. Glatzel, and N. J. Kuhn. 2014. Assessing the spatial variability of soil organic carbon stocks in an alpine setting (Grindelwald, Swiss Alps). Geoderma 232–234:270–83. doi: 10.1016/j.geoderma.2014.04.038.
  • Hopper, M., and K. Stave. 2008. Assessing the effectiveness of systems thinking interventions in the classroom. Accessed February 2, 2021. https://www.researchgate.net/publication/228574917_Assessing_the_effectiveness_of_systems_thinking_interventions_in_the_classroom.
  • Hörsch, C., and U. Kattmann. 2005. Schülervorstellungen und fachliche vorstellungen zu mikroorganismen und mikrobiellen prozessen. Erkenntnisweg Biologiedidaktik :7–19.
  • Howarth, C., P. Bryant, A. Corner, S. Fankhauser, A. Gouldson, L. Whitmarsh, and R. Willis. 2020. Building a social mandate for climate action: Lessons from covid-19. Environmental and Resource Economics 76 (4):1107–15. doi: 10.1007/s10640-020-00446-9.
  • Huxster, J. K., X. Uribe-Zarain, and W. Kempton. 2015. Undergraduate understanding of climate change: The influences of college major and environmental group membership on survey knowledge scores. The Journal of Environmental Education 46 (3):149–65. doi: 10.1080/00958964.2015.1021661.
  • IPCC. 2018. Summary for policymakers. In Global warming of 1.5 °C. ANIPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, ed. V. Masson-Delmotte, P. Zhai, O. H. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, M. Moufouma-Okia, C. Péan and R. Pidcock, 3–24.
  • Jarrett, L., and G. Takacs. 2020. Secondary students’ ideas about scientific concepts underlying climate change. Environmental Education Research 26 (3):400–20. doi: 10.1080/13504622.2019.1679092.
  • Jia, G., E. Shevliakova, P. Artaxo, N. De Noblet-Ducoudré, R. Houghton, J. House, K. Kitajima, C. Lennard, A. Popp, A. Sirin, et al. 2019. Land–climate interactions. In Climate change and land: An ipcc special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, ed. PR Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat and E. Haughey, et al. 131–248. Geneva, Switzerland: World Meteorological Organization.
  • Jones, R. J. A., R. Hiederer, E. Rusco, and L. Montanarella. 2005. Estimating organic carbon in the soils of europe for policy support. European Journal of Soil Science 56 (5):655–71. doi: 10.1111/j.1365-2389.2005.00728.x.
  • Jónsson, J. Ö. G., and B. Davíðsdóttir. 2016. Classification and valuation of soil ecosystem services. Agricultural Systems 145:24–38. doi: 10.1016/j.agsy.2016.02.010.
  • Karaarslan Semiz, G., and G. Teksöz. 2020. Developing the systems thinking skills of pre-service science teachers through an outdoor ESD course. Journal of Adventure Education and Outdoor Learning 20 (4):337–20. doi: 10.1080/14729679.2019.1686038.
  • Karpudewan, M., W.-M. Roth, and M. N. S. B. Abdullah. 2015. Enhancing primary school students' knowledge about global warming and environmental attitude using climate change activities. International Journal of Science Education 37 (1):31–54. doi: 10.1080/09500693.2014.958600.
  • Karpudewan, M., A. N. Md Zain, and A. L. Chandrasegaran, Eds. 2017. Overcoming students' misconceptions in science. Singapore: Springer.
  • Kattmann, U. 2007. Didaktische rekonstruktion—eine praktische theorie. In Theorien in der biologiedidaktischen forschung, ed. D. Krüger and H. Vogt, 93–104. Berlin: Springer.
  • Kauertz, A., and H. E. Fischer. 2016. Assessing students' level of knowledge and analyzing the reasons for learning difficulties in physics. In Applications of Rasch measurement in science education, ed. Xiufeng Liu, and Boone J. William, 212–46. Maple Grove, MN: Jam Press.
  • Keller, L., J. Stötter, A. Oberrauch, A. Kuthe, A. Körfgen, and K. Hüfner. 2019. Changing climate change education: Exploring moderate constructivist and transdisciplinary approaches through the research-education co-operation k.I.D.Z.21. GAIA – Ecological Perspectives for Science and Society 28 (1):35–43. doi: 10.14512/gaia.28.1.10.
  • Kirschbaum, M. U. F. 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic c storage. Soil Biology and Biochemistry 27 (6):753–60. doi: 10.1016/0038-0717(94)00242-S.
  • Kopainsky, B., S. Alessi, and P. Davidsen. 2011. Measuring knowledge acquisition in dynamic decision making tasks. Accessed February 2, 2021. https://www.researchgate.net/publication/267548268_Measuring_Knowledge_Acquisition_in_Dynamic_Decision_Making_Tasks.
  • Körfgen, A., L. Keller, A. Kuthe, A. Oberrauch, and H. Stötter. 2017. (Climate) change in young people's minds - from categories towards interconnections between the anthroposphere and natural sphere. The Science of the Total Environment 580:178–87. doi: 10.1016/j.scitotenv.2016.11.127.
  • Krahenbuhl, K. S. 2016. Student-centered education and constructivism: Challenges, concerns, and clarity for teachers. The Clearing House: A Journal of Educational Strategies, Issues and Ideas 89 (3):97–105. doi: 10.1080/00098655.2016.1191311.
  • Krüger, D. 2007. Die conceptual change-theorie. In Theorien in der biologiedidaktischen forschung, ed. D. Krüger and H. Vogt, 81–92. Berlin: Springer.
  • Lehmann, J., and M. Kleber. 2015. The contentious nature of soil organic matter. Nature 528 (7580):60–8. doi: 10.1038/nature16069.
  • Lethmate, J. 2009. Geoökologie, Umweltmonitoring und Umweltbildung. In Luft—Boden—Wasser—Wald: Geoökologische und ökologiedidaktische Untersuchungen in Westfalen, ed. J. Lethmate, 7–21. Münster: Aschendorff.
  • Lin, H. S. 2009. Earth's critical zone and hydropedology: Concepts, characteristics, and advances. Hydrology and Earth System Sciences Discussions 6 (2):3417–81. doi: 10.5194/hessd-6-3417-2009.
  • Longden, K., T. Russell, L. Mcguigan, and D. Bell. 1993. Rocks, soil and weather. Liverpool: Liverpool University Press.
  • Loughland, T., A. Reid, and P. Petocz. 2002. Young people's conceptions of environment: A phenomenographic analysis. Environmental Education Research 8 (2):187–97. doi: 10.1080/13504620220128248.
  • Loy, L. S., and A. Spence. 2020. Reducing, and bridging, the psychological distance of climate change. Journal of Environmental Psychology 67:101388. doi: 10.1016/j.jenvp.2020.101388.
  • Lützow, M., von, and I. Kögel-Knabner. 2009. Temperature sensitivity of soil organic matter decomposition—What do we know? Biology and Fertility of Soils 46 (1):1–15. doi: 10.1007/s00374-009-0413-8.
  • Lyons, E., and G. M. Breakwell. 1994. Factors predicting environmental concern and indifference in 13- to 16-year-olds. Environment and Behavior 26 (2):223–38. doi: 10.1177/001391659402600205.
  • Mader, C. 2013. Sustainability process assessment on transformative potentials: The Graz model for integrative development. Journal of Cleaner Production 49:54–63. doi: 10.1016/j.jclepro.2012.08.028.
  • Margenot, A. J., K. Alldritt, S. Southard, and A. O'Geen. 2016. Integrating soil science into primary school curricula: Students promote soil science education with. Soil Science Society of America Journal 80 (4):831–8. doi: 10.2136/sssaj2016.03.0056.
  • MAXQDA. 1989–2021. Maxqda, software für qualitative datenanalyse: Verbi software. Berlin: Consult. Sozialforschung GmbH.
  • Mayring, P. 2015. Qualitative content analysis: Theoretical background and procedures. In Approaches to qualitative research in mathematics education, ed. A. Bikner-Ahsbahs, C. Knipping and N. Presmeg, 365–80. Dordrecht: Springer Netherlands.
  • McNeal, K. S., J. C. Libarkin, T. S. Ledley, E. Bardar, N. Haddad, K. Ellins, and S. Dutta. 2014. The role of research in online curriculum development: The case of earthlabs climate change and earth system modules. Journal of Geoscience Education 62 (4):560–77. doi: 10.5408/13-060.1.
  • Mehren, R., A. Rempfler, J. Buchholz, J. Hartig, and E. M. Ulrich-Riedhammer. 2018. System competence modelling: Theoretical foundation and empirical validation of a model involving natural, social and human-environment systems. Journal of Research in Science Teaching 55 (5):685–711. doi: 10.1002/tea.21436.
  • Meinhold, J. L., and A. J. Malkus. 2005. Adolescent environmental behaviors. Environment and Behavior 37 (4):511–32. doi: 10.1177/0013916504269665.
  • Mohan, L., J. Chen, and C. W. Anderson. 2009. Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching 46 (6):675–98. doi: 10.1002/tea.20314.
  • Monreal, M., and J. Stötter. 2014. Adaptation to climate change in mountain regions: Global significance of marginal places. In Impact of global changes on mountains, ed. V. I. Grover, A. Borsdorf, J. Breuste, P. C. Tiwari and F. Witkowski Frangetto, 139–54. Boca Raton, FL: CRC Press.
  • Moser, S. C., and L. Dilling. 2012. Communicating climate change: Closing the science‐action gap. Oxford: Oxford University Press.
  • Mutlu, F., and O. Nacaroğlu. 2019. Examination of perceptions of gifted students about climate change and global warming. Journal of Baltic Science Education 18 (5):780–92. doi: 10.33225/jbse/19.18.780.
  • Nearing, M. A., F. F. Pruski, and M. R. O'Neal. 2004. Expected climate change impacts on soil erosion rates: A review. Journal of Soil and Water Conservation 59 (1):43–50.
  • Noetzli, J., S. Gruber, T. Kohl, N. Salzmann, and W. Haeberli. 2007. Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography. Journal of Geophysical Research 112 (F2):1–14. doi: 10.1029/2006JF000545.
  • Ojala, M. 2017. Hope and anticipation in education for a sustainable future. Futures 94:76–84. doi: 10.1016/j.futures.2016.10.004.
  • Österlind, K. 2005. Concept formation in environmental education: 14‐year olds’ work on the intensified greenhouse effect and the depletion of the ozone layer. International Journal of Science Education 27 (8):891–908. doi: 10.1080/09500690500038264.
  • Perkins, D. N., and R. Simmons. 1988. Patterns of misunderstanding: An integrative model for science, math, and programming. Review of Educational Research 58 (3):303–26. doi: 10.3102/00346543058003303.
  • Piaget, J. 2013. The construction of reality in the child. London: Routledge.
  • Podschuweit, S., S. Bernholt, and M. Brückmann. 2016. Classroom learning and achievement: How the complexity of classroom interaction impacts students’ learning. Research in Science & Technological Education 34 (2):142–63. doi: 10.1080/02635143.2015.1092955.
  • Pohl, C., and G. H. Hadorn. 2008. Core terms in transdisciplinary research. In Handbook of transdisciplinary research, ed. G. H. Hadorn, H. Hoffmann-Riem, S. Biber-Klemm, W. Grossenbacher-Mansuy, D. Joye, C. Pohl, U. Wiesmann and E. Zemp, 427–32. Dordrecht: Springer Netherlands.
  • Prietzel, J., L. Zimmermann, A. Schubert, and D. Christophel. 2016. Organic matter losses in German alps forest soils since the 1970s most likely caused by warming. Nature Geoscience 9 (7):543–8. doi: 10.1038/ngeo2732.
  • Rebetez, M., and M. Reinhard. 2008. Monthly air temperature trends in Switzerland 1901–2000 and 1975–2004. Theoretical and Applied Climatology 91 (1–4):27–34. doi: 10.1007/s00704-007-0296-2.
  • Reinders, D., H. Gropengießer, U. Kattmann, M. Komorek, and I. Parchmann. 2012. The model of educational reconstruction – A framework for improving teaching and learning science. In Science education research and practice in europe. Retrospective and prospective, ed. D. Jorde and J. Dillon, 13–37. Rotterdam, Netherlands: SensePublishers.
  • Reinfried, S., and S. Schuler. 2009. Die ludwigsburg-luzerner bibliographie zur alltagsvorstellungsforschung in den geowissenschaften. Geographie und ihre Didaktik 37 (3):120–35.
  • Rempfler, A., and R. Uphues. 2011. Systemkompetenz und ihre förderung im geographieunterricht. Geographie Und Schule 189:22–33.
  • Rempfler, A. 2012. System competence in geography education development of competence models, diagnosing pupils' achievement. 1 (3).
  • Richmond, B. 1994. Systems thinking/system dynamics: Let's just get on with it. System Dynamics Review 10 (2–3):135–57. doi: 10.1002/sdr.4260100204.
  • Rieckmann, M. 2011. Schlüsselkompetenzen für eine nachhaltigeentwicklung der weltgesellschaft. GAIA—Ecological Perspectives for Science and Society 20 (1):48–56. doi: 10.14512/gaia.20.1.10.
  • Riede, M., L. Keller, and A. Greissing. 2016. The importance of positive messages and solution-oriented framing of climate change: A case study in the context of secondary school education. In Zweite "tagung der fachdidaktik" 2015: Sprachsensibler sach-fach-unterricht—sprachen im sprachunterricht, ed. B. Hinger, 97–127. Innsbruck: Innsbrucker Beiträge zur Fachdidaktik 2. Tagung der Fachdidaktik 2015.
  • Rieß, W., and C. Mischo. 2010. Promoting systems thinking through biology lessons. International Journal of Science Education 32 (6):705–25. doi: 10.1080/09500690902769946.
  • Robottom, I. 2004. Constructivism in environmental education: Beyond conceptual change theory. Australian Journal of Environmental Education 20 (2):93–101. doi: 10.1017/S0814062600002238.
  • Rockström, J., H. J. Schellnhuber, B. Hoskins, V. Ramanathan, P. Schlosser, G. P. Brasseur, O. Gaffney, C. Nobre, M. Meinshausen, J. Rogelj, et al. 2016. The world's biggest gamble. Earth's Future. 4 (10):465–70. doi: 10.1002/2016EF000392.
  • Romeo, R., A. Vita, S. Manuelli, E. Zanini, M. Freppaz, and S. Stanchi, eds. 2015. Understanding mountain soils: A contribution from mountain areas to the international year of soils 2015. Rome: Food and agriculture organization of the United Nations.
  • RStudio Team. 2020. RStudio: Integrated development for R. Boston: RStudio.
  • Scharlemann, J. P. W., E. V. J. Tanner, R. Hiederer, and V. Kapos. 2014. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management 5 (1):81–91. doi: 10.4155/cmt.13.77.
  • Schuler, S. 2011. Alltagstheorien zu den Ursachen und Folgen des globalen Klimawandels: Erhebung und Analyse von Schülervorstellungen aus geographiedidaktischer Perspektive. Zugl. Bochum, Univ., Diss., 2010. Vol. 78 of Bochumer Geographische Arbeiten. Bochum: Europäischer Universitäts Verlag.
  • Schuler, S., D. Fanta, F. Rosenkraenzer, and W. Riess. 2018. Systems thinking within the scope of education for sustainable development (ESD)—A heuristic competence model as a basis for (science) teacher education. Journal of Geography in Higher Education 42 (2):192–204. doi: 10.1080/03098265.2017.1339264.
  • Scott, P. H., H. M. Asoko, and R. H. Driver. 1991. Teaching for conceptual change: A review of strategies. In In research in physics learning: Theoretical issues and empirical studies. Proceedings of an international workshop held at the University of Bremen. Kiel 310–29.
  • Semenza, J. C., D. E. Hall, D. J. Wilson, B. D. Bontempo, D. J. Sailor, and L. A. George. 2008. Public perception of climate change voluntary mitigation and barriers to behavior change. American Journal of Preventive Medicine 35 (5):479–87. doi: 10.1016/j.amepre.2008.08.020.
  • Senge, P. M. 1997. The fifth discipline. Measuring Business Excellence 1 (3):46–51. doi: 10.1108/eb025496.
  • Sessa, A. 1998. What changes in conceptual change? International Journal of Science Education 20 (10):1155–91.
  • Shepardson, D. P., A. Roychoudhury, and A. S. Hirsch, eds. 2017. Teaching and learning about climate change: A framework for educators. New York: Routledge.
  • Shepardson, D. P., D. Niyogi, S. Choi, and U. Charusombat. 2011. Students’ conceptions about the greenhouse effect, global warming, and climate change. Climatic Change 104 (3-4):481–507. doi: 10.1007/s10584-009-9786-9.
  • Shepardson, D. P., D. Niyogi, S. Choi, and U. Charusombat. 2009. Seventh grade students' conceptions of global warming and climate change. Environmental Education Research 15 (5):549–70. doi: 10.1080/13504620903114592.
  • Sousa, L. O. d., E. A. Hay, and D. Liebenberg. 2019. Teachers’ understanding of the interconnectedness of soil and climate change when developing a systems thinking concept map for teaching and learning. International Research in Geographical and Environmental Education 28 (4):324–42. doi: 10.1080/10382046.2019.1657684.
  • Steffen, W., J. Rockström, K. Richardson, T. M. Lenton, C. Folke, D. Liverman, C. P. Summerhayes, A. D. Barnosky, S. E. Cornell, M. Crucifix, et al. 2018. Trajectories of the earth system in the anthropocene. Proceedings of the National Academy of Sciences of the United States of America 115 (33):8252–9. doi: 10.1073/pnas.1810141115.
  • Stockmann, U., M. A. Adams, J. W. Crawford, D. J. Field, N. Henakaarchchi, M. Jenkins, B. Minasny, A. B. McBratney, V. R. de Courcelles, K. Singh, et al. 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment 164:80–99. doi: 10.1016/j.agee.2012.10.001.
  • Strazdins, L., and H. Skeat. 2011. Weathering the future: Climate change, children and young people, and decision making. Canberra: Australian Research Alliance for Children and Youth.
  • Sweeney, L. B., and J. D. Sterman. 2000. Bathtub dynamics: Initial results of a systems thinking inventory. System Dynamics Review 16 (4):249–86. doi: 10.1002/sdr.198.
  • Temme, A. J. A. M., T. Heckmann, and P. Harlaar. 2016. Silent play in a loud theatre—Dominantly time-dependent soil development in the geomorphically active proglacial area of the Gepatsch Glacier, Austria. CATENA 147:40–50. doi: 10.1016/j.catena.2016.06.042.
  • Tikka, P. M., M. T. Kuitunen, and S. M. Tynys. 2000. Effects of educational background on students' attitudes, activity levels, and knowledge concerning the environment. The Journal of Environmental Education 31 (3):12–9. doi: 10.1080/00958960009598640.
  • Trugman, A. T., D. Medvigy, J. S. Mankin, and W. R. L. Anderegg. 2018. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophysical Research Letters 45 (13):6495–503. doi: 10.1029/2018GL078131.
  • UNFCCC. 2021. Nationally determined contributions under the Paris agreement. https://unfccc.int/sites/default/files/resource/cma2021_02E.pdf.
  • UNFCCC. 2015. Paris agreement. Accessed October 4, 2021. https://unfccc.int/process/conferences/pastconferences/paris-climate-change-conference-november-2015/paris-agreement.
  • Uzzell, D. 2000. The psycho-spatial dimension of global environmental problems. Journal of Environmental Psychology 20 (4):307–18. doi: 10.1006/jevp.2000.0175.
  • Vankan, L., G. Rohwer, and S. Schuler, eds. 2013. Diercke Methoden 1: Denken lernen mit Geographie. 5th ed. Braunschweig: Westermann.
  • Varela, B., V. Sesto, and I. García-Rodeja. 2020. An investigation of secondary students’ mental models of climate change and the greenhouse effect. Research in Science Education 50 (2):599–624. doi: 10.1007/s11165-018-9703-1.
  • Vosniadou, S. 2012. Reframing the classical approach to conceptual change: Preconceptions, misconceptions and synthetic models. In Second international handbook of science education, ed. B. J. Fraser, K. Tobin, and C. J. McRobbie, 119–30. Dordrecht: Springer Netherlands.
  • WBGU. 2011. Welt im Wandel: Gesellschaftsvertrag für eine Große Transformation; [Hauptgutachten]. 2nd ed. Berlin: Wiss. Beirat der Bundesregierung Globale Umweltveränderungen (WBGU).
  • Weber, E. U., and P. C. Stern. 2011. Public understanding of climate change in the United States. The American Psychologist 66 (4):315–28. doi: 10.1037/a0023253.
  • Wilson, C. D., C. W. Anderson, M. Heidemann, J. E. Merrill, B. W. Merritt, G. Richmond, D. F. Sibley, and J. M. Parker. 2006. Assessing students' ability to trace matter in dynamic systems in cell biology. CBE Life Sciences Education 5 (4):323–31. doi: 10.1187/cbe.06-02-0142.
  • Wirtz, M. A., and F. Caspar. 2002. Beurteilerübereinstimmung und Beurteilerreliabilität: Methoden zur Bestimmung und Verbesserung der Zuverlässigkeit von Einschätzungen mittels Kategoriensystemen und Ratingskalen. Göttingen: Hogrefe Publisher for Psychology.
  • Zaval, L., and J. F. M. Cornwell. 2017. Effective education and communication strategies to promote environmental engagement. European Journal of Education 52 (4):477–86. doi: 10.1111/ejed.12252.
  • Zemp, M., H. Frey, I. Gärtner-Roer, S. U. Nussbaumer, M. Hoelzle, F. Paul, W. Haeberli, F. Denzinger, A. P. Ahlstrøm, B. Anderson, et al. 2015. Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology 61 (228):745–62. doi: 10.3189/2015JoG15J017.