1,219
Views
38
CrossRef citations to date
0
Altmetric
Research papers

Two-layer model for open channel flow with submerged flexible vegetation

, &
Pages 708-718 | Received 08 Jun 2012, Accepted 30 Jun 2014, Published online: 02 Sep 2013

References

  • Baptist, M. J., Babovic, V., Rodriguez Uthurburu, J., Uittenbogaard, R. E., Mynett, A., Verwey, A. (2007). On inducing equations for vegetation resistance. J. Hydraulic Res., 45(4), 435–450. (doi:10.1080/00221686.2007.9521778)
  • Boller, M. L., Carrington, E. (2006). The hydrodynamic effects of shape and size change during reconfiguration of a flexible macroalga. J. Exp. Biol., 209(10), 1894–1903. (doi:10.1242/jeb.02225)
  • Bootle, W. J. (1971). Forces on an inclined circular cylinder in supercritical flow. AIAA J., 9(3), 514–516. (doi:10.2514/3.6213)
  • Carollo, F. G., Ferro, V., Termini, D. (2005). Flow resistance law in channels with flexible submerged vegetation. J. Hydraulic Eng., 131(7), 554–564. (doi:10.1061/(ASCE)0733-9429(2005)131:7(554))
  • Chen, L. (2010). An integral approach for large deflection cantilever beams. Int. J. Nonlinear Mech., 45(3), 301–305. (doi:10.1016/j.ijnonlinmec.2009.12.004)
  • Dijkstra, J. T., Uittenbogaard, R. E. (2010). Modeling the interaction between flow and highly flexible aquatic vegetation. Water Resour. Res., , 1–14. 46: W12547
  • Dunn, C. J. (1996). Experimental determination of drag coefficients in open-channel with simulated vegetation. Master's Thesis, Urbana, IL: University of Illinois, Urbana-Champaign.
  • Erduran, K. S., Kutija, V. (2003). Quasi-three-dimensional numerical model for flow through flexible, rigid, submerged and non-submerged vegetation. J. Hydroinformatics, 5(3), 189–202.
  • Fonseca, M. S., Fisher, J. S. (1986). A comparison of canopy friction and sediment movement between 4 species of seagrass with reference to their ecology and restoration. Mar. Ecol. Prog. Ser., 29, 15–22. (doi:10.3354/meps029015)
  • Hoerner, S. (1965). Fluid-dynamic drag: practical information on aerodynamic drag and hydrodynamic resistance, Midland Park, New Jersey: Self-published.
  • Huai, W. X., Han, J., Zeng, Y. H., An, X., Qian, Z. D. (2009a). Velocity distribution of flow with submerged flexible vegetations based on mixing-length approach. Appl. Math. Mech., 30(3), 343–351. (doi:10.1007/s10483-009-0308-1)
  • Huai, W. X., Zeng, Y. H., Xu, Z. G., Yang, Z. H. (2009b). Three-layer model for vertical distribution in open channel flow with submerged rigid vegetation. Adv. Water Resour., 32(4), 487–492. (doi:10.1016/j.advwatres.2008.11.014)
  • Järvelä, J. (2002). Flow resistance of flexible and stiff vegetation: a flume study with natural plants. J. Hydrology, 269(1–2), 44–54. (doi:10.1016/S0022-1694(02)00193-2)
  • Järvelä, J. (2005). Effect of submerged flexible vegetation on flow structure and resistance. J. Hydrology, 307(1–4), 233–241. (doi:10.1016/j.jhydrol.2004.10.013)
  • Klaassen, G. J., Van Der Zwaard, J. J. (1974). Roughness coefficients of vegetated flood plains. J. Hydraul. Res., 12(1), 43–63. (doi:10.1080/00221687409499757)
  • Klopstra, D., Barneveld, H.J., van Noortwijk, J.M., van Velzen, E.H. (1997). Analytical model for hydraulic roughness of submerged vegetation, Proc. 27th IAHR Congress, San Francisco, Theme A 2, 775–780.
  • Kouwen, N., Unny, T. E. (1973). Flexible roughness in open channels. J. Hydraulics Div. ASCE., 99(HY5), 713–728.
  • Kubrak, E., Kubrak, J., Rowiński, P. M. (2008). Vertical velocity distributions through and above submerged, flexible vegetation. Hydrol. Sci. J., 53(4), 905–920. (doi:10.1623/hysj.53.4.905)
  • Kubrak, E., Kubrak, J., Rowiński, P. M. (2012). Influence of a method of evaluation of the curvature of flexible vegetation elements on vertical distributions of flow velocities. Acta Geophys., 60(4), 1098–1119. (doi:10.2478/s11600-011-0077-2)
  • Li, R. M., Shen, H. W. (1973). Effect of tall vegetations on flow and sediment. J. Hydraulic Div. ASCE., 99(5), 793–814.
  • Liu, Z. W., Chen, Y. C., Zhu, D. J., Hui, E. Q., Jiang, C. B. (2012). Analytical model for vertical velocity profiles in flows with submerged shrub-like vegetation. Environ. Fluid Mech., 12(4), 341–346. (doi:10.1007/s10652-012-9243-6)
  • Luhar, M., Nepf, H. (2011). Flow induced reconfiguration of buoyant, flexible aquatic vegetation. Limnol. Oceanogr., 56(6), 2003–2017. (doi:10.4319/lo.2011.56.6.2003)
  • Saowapon, C., Kouwen, N. (1989). A physically based model for determining flow resistance and velocity profiles in vegetated channels. Symposium on Manning's equation. B.C. Yen, ed., Virginia, 559–568.
  • Schlichting, H. (1979). Boundary layer theory, 7 New York: McGraw-Hill.
  • Shimizu, Y., Tsujimoto, T. (1994). Numerical analysis of turbulent open-channel flow over a vegetation layer using a k–ϵ turbulence model. J. Hydrosci. Hydraulic Eng., 11(2), 57–67.
  • Shimizu, Y., Tsujimoto, T., Nakagawa, H., Kitamura, T. (1991). Experimental study on flow over rigid vegetation simulated by cylinders with equi-spacing. Proc. JSCE, 438, 31–40. (in Japanese).
  • Stoesser, T., Liang, C., Rodi, W., Jirka, G.H. (2006). Large eddy simulation of fully-developed turbulent flow through submerged vegetation. Proc. Int. Conf. Fluv. Hydraul. – River Flow, Lisbon, Portugal, 227–234, Vol. 1. Taylor and Francis/Balkema, Leiden.
  • Su, X. H., Li, C. W., Chen, B. H. (2003). Three-dimensional large eddy simulation of free surface turbulent flow in open channel within submerged vegetation domain. J. Hydrodyn. Ser. B, 15(3), 35–43.
  • Sukhodolov, A. (2005). Comment on drag and reconfiguration of macrophytes. Freshw. Biol., 50(1), 194–195. (doi:10.1111/j.1365-2427.2004.01296.x)
  • Suryanarayana, N. V., Arici, Ö. (2002). Design and simulation of thermal systems, New York: McGraw-Hill.
  • Tsujimoto, T., Kitamura, T. (1990). Velocity profile of flow in vegetated bed channels. KHL Progressive Report 1, Kanazawa, Japan: Kanazawa University.
  • Velasco, D., Bateman, A., Medina, V. (2008). A new integrated, hydro-mechanical model applied to flexible vegetation in riverbeds. J. Hydraulic Res., 46(5), 579–597. (doi:10.3826/jhr.2008.2986)
  • Wilson, C. A.M.E. (2007). Flow resistance models for flexible submerged vegetation. J. Hydrology, 342(3), 213–222. (doi:10.1016/j.jhydrol.2007.04.022)
  • Wilson, C. A.M.E., Stoesser, T., Bates, P. D., Pinzen, A. B. (2003). Open channel flow through different forms of submerged flexible vegetation. J. Hydraulic Eng., 129(11), 847–853. (doi:10.1061/(ASCE)0733-9429(2003)129:11(847))
  • Wilson, C. A.M.E., Yagci, O., Rauch, H. P., Olsen, N. R.B. (2006). 3D numerical modeling of a willow vegetated river/floodplain system. J. Hydrology, 327(1–2), 13–21. (doi:10.1016/j.jhydrol.2005.11.027)
  • Yang, W., Choi, S. U. (2009). Impact of stem flexibility on mean flow and turbulence structure in depth-limited open channel flows with submerged vegetation. J. Hydraulic Res., 47(4), 445–454. (doi:10.1080/00221686.2009.9522020)
  • Yang, W., Choi, S. U. (2010). A two-layer approach for depth-limited open-channel flows with submerged vegetation. J. Hydraulic Res., 48(4), 466–475. (doi:10.1080/00221686.2010.491649)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.