276
Views
3
CrossRef citations to date
0
Altmetric
Research papers

Alternatives for flow solution at the leading edge of gravity currents using the shallow water equations

(PhD Student) & (Assistant Professor)
Pages 228-240 | Received 14 Dec 2012, Accepted 20 Oct 2013, Published online: 09 Apr 2014

REFERENCES

  • An, S., Julien, P.Y. (2012). Numerical simulation of particle-driven gravity currents. Environ. Fluid Mech. 12(6), 495–513. doi: 10.1007/s10652-012-9251-6
  • Benjamin, T.B. (1968). Gravity currents and related phenomena. J. Fluid Mech. 31(2), 209–248. doi: 10.1017/S0022112068000133
  • Bonnecaze, R.T., Hallworth, M.A., Huppert, H.E, Lister, J.R. (1995). Axisymmetric particle-driven gravity currents. J. Fluid Mech. 294, 93–121. doi: 10.1017/S0022112095002825
  • Cantero, M.I., Lee, J.R., Balachandar, S., Garcia, M.H. (2007). On the front velocity of gravity currents. J. Fluid Mech. 586, 1–39. doi: 10.1017/S0022112007005769
  • Dalziel, S.B. (1993). Rayleigh–Taylor instability: experiments with image analysis. Dyn. Atmos. Oceans. 20, 127–153. doi: 10.1016/0377-0265(93)90051-8
  • Durbin, P.A. (1991). Near-wall turbulence closure without damping functions. Theor. Comput Fluid Dyn. 3(1), 1–13.
  • Durbin, P.A. (1995). Separated flow computations with the k–ϵ–υ2 model. AIAA J. 33, 659–664. doi: 10.2514/3.12628
  • Härtel, C., Meiburg, E., Necker, F. (2000). Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid Mech. 418, 189–212. doi: 10.1017/S0022112000001221
  • Hatcher, T.M., Vasconcelos, J.G. (2013). Finite-volume and shock-capturing shallow water equation model to simulate Boussinesq-type lock-exchange flows. J. Hydraulic Eng. 139(14), 1223–1233. doi: 10.1061/(ASCE)HY.1943-7900.0000775
  • Hogg, A.J., Hallworth, M.A., Huppert, H.E. (2005). On gravity currents driven by constant fluxes of saline and particle-laden fluid in the presence of a uniform flow. J. Fluid Mech. 539, 349–385. doi: 10.1017/S002211200500546X
  • Huppert, H.E., Simpson, J.E. (1980). The slumping of gravity currents. J. Fluid Mech. 99, 785–799. doi: 10.1017/S0022112080000894
  • Ilicak, M., Özgökmen, T.M., Peters, H., Baumert, H.Z., Iskandarani, M. (2008). Very large eddy simulation of the Red Sea overflow. Ocean Modeling. 20(2), 183–206. doi: 10.1016/j.ocemod.2007.08.002
  • von Kármán, T. (1940). The engineer grapples with nonlinear problems. Bull. Am. Math. Soc. 46, 615–683. doi: 10.1090/S0002-9904-1940-07266-0
  • Lai, C.-T. (1988). Comprehensive method of characteristics models for flow simulation. J. Hydraulic Eng. 114(9), 1074–1097. doi: 10.1061/(ASCE)0733-9429(1988)114:9(1074)
  • Lien, F., Kalitzin, G. (2001). Computations of transonic flow with the turbulence model. Int. J. Heat Fluid Flow. 22, 53–61. doi: 10.1016/S0142-727X(00)00073-4
  • Marino, B.M., Thomas, L.P., Linden, P.F. (2005). The front condition of gravity currents. J. Fluid Mech. 536, 49–78. doi: 10.1017/S0022112005004933
  • Mehdizadeh, A., Firoozabadi, B. (2009). Simulation of a density current turbulent flow employing different RANS models: a comparison study. J. Scientia Iranica. 16(1), 53–63.
  • Mehdizadeh, A., Firoozabadi, B., Farhanieh, B. (2008). Numerical simulation of turbidity current using turbulence model. J. Appl. Fluid Mech. 1(2), 45–55.
  • Mortensen, M., Bjørn, A., Pettersson, R., Carl, E.W. (2010). Assessment of the finite volume method applied to the v2-f model. Int. J. Numer. Methods Fluids 63(4), 495–516.
  • Rottman, J.W., Simpson, J.E. (1983). Gravity currents produced by instantaneous releases of a heavy fluid in a rectangular channel. J. Fluid Mech. 135, 95–110. doi: 10.1017/S0022112083002979
  • Simpson, J.E. (1997). Gravity currents in the environment and the laboratory. ed. Cambridge University Press, Cambridge.
  • Sturm T.W. (2010). Open channel hydraulics. ed. McGraw-Hill, New York.
  • Tokyay, T., Constantinescu, G., Meiburg, E. (2011). Lock-exchange gravity currents with a high volume of release propagating over a periodic array of obstacles. J. Fluid Mech. 672, 570–605. doi: 10.1017/S0022112010006312
  • Toro, E.F. (2001). Shock-capturing methods for free-surface shallow flows. ed. John Wiley & Sons, Chichester.
  • Ungarish, M. (2009). An introduction to gravity currents and intrusions. ed. Chapman and Hall/CRC, Boca Raton.
  • Ungarish, M., Huppert, H.E. (2002). On gravity currents propagating at the base of a stratified ambient. J. Fluid Mech. 458, 283–301. doi: 10.1017/S0022112002007978
  • Wright, S.J., Paez-Rivadeneira, D. (1996). Density intrusions with large relative thickness. Dyn. Atmos. Oceans. 24, 129–137. doi: 10.1016/0377-0265(95)00448-3
  • Wright, S.J., Kim, Y., Buhler, J. (1990). Density current propagation in flowing receiving fluid. Proc. Int. Conf. Physical Modeling of Transport and Dispersion, Boston, MA. ASCE, New York, 12A19–12A24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.