571
Views
18
CrossRef citations to date
0
Altmetric
Research papers

Experimental study on the role of spanwise vorticity and vortex filaments in the outer region of open-channel flow

, , , &
Pages 476-489 | Received 16 Apr 2013, Accepted 27 Apr 2014, Published online: 31 Jul 2014

References

  • Adrian, R.J. (1991). Particle-imaging techniques for experimental fluid mechanics. Ann. Rev. Fluid Mech. 23(1), 261–304. doi: 10.1146/annurev.fl.23.010191.001401
  • Adrian, R.J. (2007). Hairpin vortex organization in wall turbulence. Phys .Fluids 19, 041301. doi: 10.1063/1.2717527
  • Adrian, R.J., Christensen, K.T., Liu, Z.C. (2000a). Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275–290. doi: 10.1007/s003489900087
  • Adrian, R.J., Liu, Z. (2002). Observation of vortex packets in direct numerical simulation of fully turbulent channel flow. J. Visual 5(1), 9–19. doi: 10.1007/BF03182598
  • Adrian, R.J., Marusic, I. (2012). Coherent structures in flow over hydraulic engineering surfaces. J. Hydraulic Res. 50(5), 451–464. doi: 10.1080/00221686.2012.729540
  • Adrian, R.J., Meinhart, C.D., Tomkins, C.D. (2000b). Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422(1), 1–54. doi: 10.1017/S0022112000001580
  • Adrian, R.J., Westerweel, J. (2011). Particle image velocimetry. Cambridge University Press, New York.
  • Balakumar, B., Adrian, R.J. (2007). Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc.A. 365, 665–681. doi: 10.1098/rsta.2006.1940
  • Baltzer, J.R., Adrian, R.J., Wu, X.H. (2013). Structural organization of large and very large scales in turbulent pipe flow simulation. J. Fluid Mech. 720, 236–279. doi: 10.1017/jfm.2012.642
  • Camussi, R., Di Felice, F. (2006). Statistical properties of vortical structures with spanwise vorticity in zero pressure gradient turbulent boundary layers. Phys. Fluids 18, 035108. doi: 10.1063/1.2185684
  • Carlier, J., Stanislas, M. (2005). Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535(36), 143–188. doi: 10.1017/S0022112005004751
  • Chakraborty, P., Balachandar, S., Adrian, R.J. (2005). On the relationships between local vortex identification schemes. J. Fluid Mech. 535(1), 189–214. doi: 10.1017/S0022112005004726
  • Christensen, K., Adrian, R.J. (2001). Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431(1), 433–443. doi: 10.1017/S0022112001003512
  • Crawford, C.H., Karniadakis, G.E. (1997). Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing. Phys. Fluids 9(3), 788–806. doi: 10.1063/1.869210
  • Del Alamo, J.C., Jimenez, J. (2003). Spectra of the very large anisotropic scales in turbulent channels. Physics of Fluids 15(6), L41–L44.
  • Del Alamo, J.C., Jimenez, J., Zandonade, P., Moser, R.D. (2006). Self-similar vortexclusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329–358. doi: 10.1017/S0022112006000814
  • Dennis, D.J.C., Nickels, T.B. (2011). Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673(1), 180–217. doi: 10.1017/S0022112010006324
  • Dwivedi, A., Melville, B.W., Shamseldin, A.Y., Guha, T.K. (2011). Flow structures and hydrodynamic force during sediment entrainment. Water Resour. Res. 47, W01509.
  • Elsinga, G., Adrian, R.J., Van Oudheusden, B., Scarano, F. (2010). Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer. J. Fluid Mech. 644(1), 35–60. doi: 10.1017/S0022112009992047
  • Falco, R.E. (1991). A coherent structure model of the turbulent boundary layer and its ability to predict Reynolds number dependence. Phil. Trans. R. Soc. Lond. A 336, 103–129. doi: 10.1098/rsta.1991.0069
  • Ganapathisubramani, B., Longmire, E.K., Marusic, I. (2003). Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 35–46. doi: 10.1017/S0022112002003270
  • Gao, Q., Ortiz-Dunnas, C., Longmire, E.K. (2011). Analysis of vortex populations in turbulent wall-bounded flows. J. Fluid Mech. 678, 87–123. doi: 10.1017/jfm.2011.101
  • Guala, M., Hommema, S., Adrian, R.J. (2006). Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554(1), 521–542. doi: 10.1017/S0022112006008871
  • Guezennec, Y.G., Piomelli, U., Kim, J. (1989). On the shape and dynamics ofwall structures in turbulent channel flow. Phys. Fluids A 1(4), 764–766. doi: 10.1063/1.857373
  • Head, M., Bandyopadhyay, P. (1981). New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297–338. doi: 10.1017/S0022112081001791
  • Herpin, S., Stanislas, M., Soria, J. (2010). The organization of near-wall turbulence: A comparison between boundary layer SPIV data and channel flow DNS data. J. Turbulence 11(47), 1–30.
  • Kim, B.J., Sung, H.J. (2006). A further assessment of interpolation schemes for window deformation in PIV. Exp. Fluids 41(3), 499–511. doi: 10.1007/s00348-006-0177-y
  • Klewicki, J.C. (1989). Velocity–vorticity correlations related to the gradients of the Reynolds stresses in parallel turbulent wall flows. Phys. Fluids A 1(7), 1285–1288. doi: 10.1063/1.857354
  • Klewicki, J.C., Murray, J., Falco, R. (1994). Vortical motion contributions to stress transport in turbulent boundary layers. Phys. Fluids 6(1), 277–286. doi: 10.1063/1.868082
  • Liu, Z.C., Landreth, C., Adrian, R.J., Hanratty, T. (1991). High resolution measurement of turbulent structure in a channel with particle image velocimetry. Exp. Fluids 10(6), 301–312. doi: 10.1007/BF00190246
  • Maciel, Y., Robitaille, M., Rahgozar, S. (2012). A method for characterizing cross-sections of vortices in turbulent flows. Int. J. Heat Fluid Flow 37, 177–188. doi: 10.1016/j.ijheatfluidflow.2012.06.005
  • Marusic, I. (2001). On the role of large-scale structures in wall turbulence. Phys. Fluids 13, 735–743. doi: 10.1063/1.1343480
  • Marusic, I., Adrian, R.J. (2013). The eddies and scales of wall turbulence. In Ten chapters in turbulence. P.A. Davidson, Y. Kaneda, K.R. Sreenivasan, eds. Cambridge University Press, New York, 176–220.
  • Meinhart, C.D., Adrian, R.J. (1995). On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7(4), 694–696. doi: 10.1063/1.868594
  • Morrill-Winter, C., Klewicki, J. (2013). Influences of boundary layer scale separation on the vorticity transport contribution to turbulent inertia. Phys. Fluids 25(1), 015108.
  • Natrajan, V.K., Wu, Y., Christensen, K.T. (2007). Spatial signatures of retrograde spanwise vortices in wall turbulence. J. Fluid Mech. 574, 155–168. doi: 10.1017/S0022112006003788
  • Nezu, I. (2005). Open-channel flow turbulence and its research prospect in the 21st century. J. Hydraulic Eng. 131, 229–246. doi: 10.1061/(ASCE)0733-9429(2005)131:4(229)
  • Nezu, I., Rodi, W. (1986). Open-channel flow measurements with a laser doppler anemometer. J. Hydraulic Eng. 112(5), 335–355. doi: 10.1061/(ASCE)0733-9429(1986)112:5(335)
  • Perry, A., Chong, M. (1982). On the mechanism of wall turbulence. J. Fluid Mech. 119(173), 106–121.
  • Perry, A., Henbest, S., Chong, M. (1986). A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165(1), 163–199. doi: 10.1017/S002211208600304X
  • Perry, A., Marusic, I. (1995). A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361–388. doi: 10.1017/S0022112095003351
  • Pirozzoli, S., Bernardini, M., Grasso, F. (2008). Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech. 613, 205–231. doi: 10.1017/S0022112008003005
  • Priyadarshana, P., Klewicki, J.C., Treat, S., Foss, J. (2007). Statistical structure of turbulent-boundary-layer velocity–vorticity products at high and low Reynolds numbers. J. Fluid Mech. 570, 307–346. doi: 10.1017/S0022112006002771
  • Robinson, S.K. (1991). Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23(1), 601–639. doi: 10.1146/annurev.fl.23.010191.003125
  • Roussinova, V., Shinneeb, A.M., Balachandar, R. (2009). Investigation of fluid structures in a smooth open-channel flow using proper orthogonal decomposition. J. Hydraulic Eng. 136(3), 143–154. doi: 10.1061/(ASCE)HY.1943-7900.0000155
  • Sanjou, M., Nezu, I. (2011). Turbulence structure and coherent vortices in open-channel flows with wind-induced water waves. Environ. Fluid Mech. 11(2), 113–131. doi: 10.1007/s10652-011-9210-7
  • Scarano, F. (2002). Iterative image deformation methods in PIV. Meas. Sci. Technol. 13, R1–R19.
  • Schlatter, P., Orlu, R. (2012). Turbulent boundary layers at moderate Reynolds numbers: Inflow length and tripping effects. J. Fluid Mech. 710, 5–34. doi: 10.1017/jfm.2012.324
  • Schlatter, P., Orlu, R., Li, Q., Hussain, F., Henningson, D. (2012). On the near-wall vortical structures at high Reynolds numbers.. Bull. Am. Phys. Soc. 57(17), 112.
  • Smith, C.R., Walker, J., Haidari, A., Sobrun, U. (1991). On the dynamics of near-wall turbulence. Phi. Trans. R. Soc. Lond. A 336, 131–175. doi: 10.1098/rsta.1991.0070
  • Stanislas, M., Perret, L., Foucaut, J.M. (2008). Vortical structures in the turbulent boundary layer: A possible route to a universal representation. J. Fluid Mech. 602, 327–382.
  • Tanahashi, M., Hirayama, T., Taka, S., Miyauchi, T. (2008). Measurement of fine scale structure in turbulence by time-resolved dual-plane stereoscopic PIV. Int. J. Heat Fluid Flow 29(3), 792–802. doi: 10.1016/j.ijheatfluidflow.2008.02.009
  • Tanahashi, M., Kang, S.J., Miyamoto, T., Shiokawa, S., Miyauchi, T. (2004). Scaling law of fine scale eddies in turbulent channel flows up to . Int. J. Heat Fluid Flow 25(3), 331–340. doi: 10.1016/j.ijheatfluidflow.2004.02.016
  • Theodorsen, T. (1952). Mechanism of turbulence. Proc. 2nd Midwestern Conf. Fluid Mechanics, Ohio State University, Columbus, 1–19.
  • Tomkins, C.D., Adrian, R.J. (2003). Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 37–74. doi: 10.1017/S0022112003005251
  • Westerweel, J., Scarano, F. (2005). Universal outlier detection for PIV data. Exp. Fluids 39(6), 1096–1100. doi: 10.1007/s00348-005-0016-6
  • Wu, X.H., Baltzer, J.R., Adrian, R.J. (2012). Direct numerical simulation of a 30R long turbulent pipe flow at R+=685: Large- and very large-scale motions. J. Fluid Mech. 698, 235–281. doi: 10.1017/jfm.2012.81
  • Wu, X.H., Moin, P. (2009). Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 5–41. doi: 10.1017/S0022112009006624
  • Wu, Y., Christensen, K.T. (2006). Population trends of spanwise vortices in wall turbulence. J. Fluid Mech. 568(1), 55–76. doi: 10.1017/S002211200600259X
  • Zhou, J., Adrian, R.J., Balachandar, S. (1996). Autogeneration of near wall vortical structures in channel flow. Phys. Fluids 8, 288–291. doi: 10.1063/1.868838
  • Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T. (1999). Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387(1), 353–396. doi: 10.1017/S002211209900467X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.