346
Views
12
CrossRef citations to date
0
Altmetric
Research papers

Modelling coastal water waves using a depth-integrated, non-hydrostatic model with shock-capturing ability

, &
Pages 119-133 | Received 17 Feb 2014, Accepted 22 Jul 2014, Published online: 21 Oct 2014

References

  • Ai, C.-F., & Jin, S. (2012). A multi-layer non-hydrostatic model for wave breaking and run-up. Coastal Engineering, 62, 1–8. doi: 10.1016/j.coastaleng.2011.12.012
  • Bai, Y., & Cheung, K. F. (2013). Dispersion and nonlinearity of multi-layer non-hydrostatic free-surface flow. Journal of Fluid Mechanics, 726, 226–260. doi: 10.1017/jfm.2013.213
  • Beji, S., & Battjes, J. A. (1993). Experimental investigation of wave propagation over a bar. Coastal Engineering, 19(1–2), 151–162. doi: 10.1016/0378-3839(93)90022-Z
  • Bradford, S. (2005). Godunov-based model for nonhydrostatic wave dynamics. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(5), 226–238. doi: 10.1061/(ASCE)0733-950X(2005)131:5(226)
  • Bradford, S. (2011). Nonhydrostatic model for surf zone simulation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 137(4), 163–174. doi: 10.1061/(ASCE)WW.1943-5460.0000079
  • Casulli, V., & Stelling, G. S. (1998). Numerical simulation of 3D quasi-hydrostatic, free-surface flows. Journal of Hydraulic Engineering, 124(7), 678–686. doi: 10.1061/(ASCE)0733-9429(1998)124:7(678)
  • Casulli, V., & Zanolli, P. (2002). Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems. Mathematical and Computer Modelling, 36(9–10), 1131–1149. doi: 10.1016/S0895-7177(02)00264-9
  • Choi, D. Y., Wu, C. H., & Young, C.-C. (2011). An efficient curvilinear non-hydrostatic model for simulating surface water waves. International Journal of Numerical Methods in Fluids, 66(9), 1093–1115. doi: 10.1002/fld.2302
  • Fang, K. Z., Zou, Z. L., Dong, P., Liu, Z. B., Gui, Q. Q., & Yin, J. W. (2013). An efficient shock capturing algorithm to the extended Boussinesq wave equations. Applied Ocean Research, 43, 11–20. doi: 10.1016/j.apor.2013.07.001
  • Fang, K. Z., Zou, Z. L., & Wang, Y. (2005). An explicit high resolution scheme for nonlinear shallow water equations. China Ocean Engineering, 19(3), 349–364.
  • Guo, W. D., Lai, J. S., & Lin, G. F. (2008). Finite-volume multi-stage schemes for shallow-water flow simulations. International Journal of Numerical Methods in Fluids, 57(2), 177–204. doi: 10.1002/fld.1631
  • Kang, L., & Guo, X. M. (2013). Depth-integrated, non-hydrostatic model using a new alternating direction implicit scheme. Journal of Hydraulic Research, 51(4), 368–379. doi: 10.1080/00221686.2013.778340
  • van Leer, B. (1979). Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. Journal of Computational Physics, 32(1), 101–136. doi: 10.1016/0021-9991(79)90145-1
  • Luth, H. R., Klopman, G., & Kitou, N. (1994). Project 13 G. Kinematics of waves breaking partially on an offshore bar; LDV measurements for waves with and without a net onshore current (Technical Report H1573), Delft Hydraulics.
  • Lynett, P., Swigle, D., Son, S., Bryant, D., & Socolofsky, S. (2010). Experimental study of solitary wave evolution over a 3D shallow shelf. In J. M. Smith & P. Lynett (Eds.), Proceedings of the international conference on coastal engineering (pp. 813–823), Shanghai. New York: ASCE.
  • Ma, G., Shi, F., & Kirby, J. T. (2012). Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling, 43–44, 22–35. doi: 10.1016/j.ocemod.2011.12.002
  • Orszaghova, J., Borthwick, A. G. L., & Taylor, P. H. (2011). From the paddle to the beach – A Boussinesq shallow water numerical wave tank based on Madsen and Sørensen's equations. Journal of Computational Physics, 231(2), 328–344. doi: 10.1016/j.jcp.2011.08.028
  • Roeber, V. (2010). Boussiensq-type model for nearshore wave process in fringging reef environment (PhD thesis). University of Hawaii, Mâno, CA.
  • Roeber, V., Cheung, K. F., & Kobayashi, M. H. (2010). Shock-capturing Boussinesq-type model for nearshore wave processes. Coastal Engineering, 57(4), 407–423. doi: 10.1016/j.coastaleng.2009.11.007
  • Shi, F., Kirby, J. T., Harris, J. C., Geiman, J. D., & Grilli, S. T. (2012). A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43–44, 36–51. doi: 10.1016/j.ocemod.2011.12.004
  • Smit, P., Janssen, T., Holthuijsen, L., & Smith, J. (2014). Non-hydrostatic modeling of surf zone wave dynamics. Coastal Engineering, 83, 36–48. doi: 10.1016/j.coastaleng.2013.09.005
  • Smit, P., Zijlema, M., & Stelling, G. (2013). Depth-induced wave breaking in a non-hydrostatic, near-shore wave model. Coastal Engineering, 76, 1–16. doi: 10.1016/j.coastaleng.2013.01.008
  • Stansby, P. K., & Zhou, J. G. (1998). Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems. International Journal of Numerical Methods in Fluids, 28(3), 541–563. doi: 10.1002/(SICI)1097-0363(19980915)28:3<541::AID-FLD738>3.0.CO;2-0
  • Stelling, G., & Zijlema, M. (2003). An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. International Journal of Numerical Methods in Fluids, 43(1), 1–23. doi: 10.1002/fld.595
  • Tissier, M., Bonneton, P., Marche, F., Chazel, F., & Lannes, D. (2012). A new approach to handle wave breaking in fully non-linear Boussinesq models. Coastal Engineering, 67, 54–66. doi: 10.1016/j.coastaleng.2012.04.004
  • Tonelli, M., & Petti, M. (2009). Hybrid finite volume – Finite difference scheme for 2DH improved Boussinesq equations. Coastal Engineering, 56(5–6), 609–620. doi: 10.1016/j.coastaleng.2009.01.001
  • Toro, E. F. (2009). Riemann solvers and numerical methods for fluid dynamics, a practical introduction. Dordrecht: Springer.
  • Toro, E. F., & Titarev, V. A. (2006). MUSTA fluxes for systems of conservation laws. Journal of Computational Physics, 216(2), 403–429. doi: 10.1016/j.jcp.2005.12.012
  • Vincent, C., & Briggs, M. (1989). Refraction–diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal, and Ocean Engineering, 115(2), 269–284. doi: 10.1061/(ASCE)0733-950X(1989)115:2(269)
  • van der Vorst, H. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13(2), 631–644. doi: 10.1137/0913035
  • Wu, C., Young, C.-C., Chen, Q., & Lynett, P. (2010). Efficient nonhydrostatic modelling of surface waves from deep to shallow water. Journal of Waterway, Port, Coastal, and Ocean Engineering, 136(2), 104–118. doi: 10.1061/(ASCE)WW.1943-5460.0000032
  • Yamazaki, Y., Kowalik, Z., & Cheung, K. F. (2009). Depth-integrated, non-hydrostatic model for wave breaking and run-up. International Journal of Numerical Methods in Fluids, 61(5), 473–497. doi: 10.1002/fld.1952
  • Zijlema, M., & Stelling, G. S. (2008). Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure. Coastal Engineering, 55(10), 780–790. doi: 10.1016/j.coastaleng.2008.02.020
  • Zijlema, M., Stelling, G. S., & Smit, P. (2011). SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Engineering, 58(10), 992–1012. doi: 10.1016/j.coastaleng.2011.05.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.