497
Views
9
CrossRef citations to date
0
Altmetric
Research papers

Turbulence behaviour investigation in transient flows

&
Pages 83-92 | Received 24 Jul 2013, Accepted 20 Aug 2014, Published online: 22 Oct 2014

REFERENCES

  • Ariyaratne, C., He, S., & Vardy, A. (2010). Wall friction and turbulence dynamics in decelerating pipe flows. Journal of Hydraulic Research, 48, 810–821. doi: 10.1080/00221686.2010.525372
  • Bergant, A., Simpson, A. R., & Vítkovský, J. (2001). Developments in unsteady pipe flow friction modelling. Journal of Hydraulic Research, 39, 249–257. doi: 10.1080/00221680109499828
  • Brunone, B., Golia, U. M., & Greco, M. (1991). Modelling of fast transients by numerical methods. Proceedings of the International Conference: Transients with Water Column Separation, IAHR, Valencia, Spain, 273–280.
  • Daily, W. L., Hankey, W. L., Olive, R. W., & Jordaan, J. M. (1956). Resistance coefficients for accelerated and decelerated flows through smooth tubes and orifices. Transactions of ASME, 78, 1071–1077.
  • Fan, S., Lakshminarayana, B., & Barnett, M. (1993). Low-Reynolds-number k-ϵ model for unsteady turbulent boundary-layer flows. Journal of AIAA, 31, 1777–1784. doi: 10.2514/3.11849
  • Ghidaoui, M. S., & Mansour, S. (2002). Efficient treatment of Vardy-Brown unsteady shear in pipe transients. J. Hydraulic Eng. 128(1), 102–112. doi: 10.1061/(ASCE)0733-9429(2002)128:1(102)
  • Ghidaoui, M. S., Mansour, S. G. S., & Zhao, M. (2002). Applicability of quasisteady and axisymmetric turbulence models in water hammer. Journal of Hydraulic Engineering, 128, 917–924. doi: 10.1061/(ASCE)0733-9429(2002)128:10(917)
  • Ghidaoui, M. S., Zhao, M., Mclnnis, D. A., & Axworthy, D. A. (2005). A review of water hammer theory and practice. Applied Mechanics Reviews, 58(1), 49–76. doi: 10.1115/1.1828050
  • Golia, U. M. (1990). Sulla valutazione delle forze resistenti nel colpo d'ariete. Report n. 639, Dept. of Hydraulic and Envir. Eng. University of Naples, Naples, Italy (in Italian).
  • Greenblatt, D., & Moss, E. A. (2004). Rapid temporal acceleration of a turbulent pipe flow. Journal of Fluid Mechanics, 514, 65–75. doi: 10.1017/S0022112004000114
  • He, S., Ariyaratne, C., & Vardy, A. E. (2008). A computational study of wall friction and turbulence dynamics in accelerating pipe flows. Journal of Computers & Fluids, 37, 674–689. doi: 10.1016/j.compfluid.2007.09.001
  • He, S., Ariyaratne, C., & Vardy, A. E. (2011). Wall shear stress in accelerating turbulent pipe flow. Journal of Fluid Mechanics, 685, 440–460. doi: 10.1017/jfm.2011.328
  • He, S., & Jackson, J. D. (2000). A study of turbulence under conditions of transient flow in a pipe. Journal of Fluid Mechanics, 408, 1–38. doi: 10.1017/S0022112099007016
  • He, S., & Jackson, J. D. (2009). An experimental study of pulsating turbulent flow in a pipe. European Journal of Mechanics (B/Fluids), 28, 309–320. doi: 10.1016/j.euromechflu.2008.05.004
  • He, S., & Seddighi, M. (2013).Turbulence in transient channel flow. Journal of Fluid Mechanics, 715, 60–102. doi: 10.1017/jfm.2012.498
  • Kita, Y., Adachi, Y., & Hirose, K. (1980). Periodically oscillating turbulent flow in a pipe. Bulletin of JSME, 23, 656–664. doi: 10.1299/jsme1958.23.656
  • Kurokawa, J., & Morikawa, M. (1986). Accelerated and decelerated flows in a circular pipe (1st report, velocity profiles and friction coefficient). Bulletin of JSME, 29, 758–765. doi: 10.1299/jsme1958.29.758
  • Maruyama, T., Kuribayashi, T., & Mizushina, T. (1976). The structure of the turbulence in transient pipe flows. Journal of Chemical Engineering, 9, 431–439. doi: 10.1252/jcej.9.431
  • Mitra, A. K., & Rouleau, W. T. (1985). Radial and axial variations in transient pressure waves transmitted through liquid transmission lines. Journal of Fluids Engineering, 107(1), 105–111. doi: 10.1115/1.3242423
  • Pezzinga, G. (1999). Quasi-2D model for unsteady flow in pipe networks. Journal of Hydraulic Engineering, 125, 676–685. doi: 10.1061/(ASCE)0733-9429(1999)125:7(676)
  • Pothof, A. (2008). A turbulent approach to unsteady friction. Journal of Hydraulic Research, 46, 679–690. doi: 10.3826/jhr.2008.2975
  • Riasi, A., Nourbakhsh, A., & Riasee, M. (2009a). Unsteady turbulent pipe flow due to water hammer using k-ω turbulence model. Journal of Hydraulic Research, 47, 429–437. doi: 10.1080/00221686.2009.9522018
  • Riasi, A., Nourbakhsh, A., & Raisee, M. (2009b). Unsteady velocity profiles in laminar and turbulent water hammer flows. Journal of Fluids Engineering, 131, 121202.
  • Scotti, A., & Piomelli, U. (2001). Numerical simulation of pulsating turbulent channel flow. Journal of the Physics of Fluids, 13, 1367–1384. doi: 10.1063/1.1359766
  • Silva-Araya, W. F., & Chaudhry, M. H. (1997). Computation of energy dissipation in transient flow. Journal of Hydraulic Engineering, 123, 108–115. doi: 10.1061/(ASCE)0733-9429(1997)123:2(108)
  • Trikha, A. K. (1975). An efficient method for simulating frequency-dependent friction in transient liquid flow. Journal of Fluids Engineering, 91(1), 97–105. doi: 10.1115/1.3447224
  • Vardy, A. E., & Hwang, K. L. (1991). A characteristics model of transient friction in pipes. Journal of Hydraulic Research, 29, 669–685. doi: 10.1080/00221689109498983
  • Vardy, A. E., Hwang, K. L., & Brown, J. M. B. (1993). A weighting function model of transient turbulent pipe friction. Journal of Hydraulic Research, 31, 533–548.
  • Vardy, A. E., & Brown, J. M. B. (1995). Transient, turbulent, smooth pipe friction. Journal of Hydraulic Research, 33, 435–456. doi: 10.1080/00221689509498654
  • Wilcox, D. C. (1994). Turbulence modeling for CFD. La Canada, CA: DCW Industries.
  • Zielke, W. (1968). Frequency-dependent friction in transient pipe flow. Journal of Basic Engineering, 90(1), 109–115. doi: 10.1115/1.3605049
  • Zhao, M., & Ghidaoui, M. S. (2003). Efficient quasi-two-dimensional model for water hammer problems. Journal of Hydraulic Engingeering, 129, 1007–1013. doi: 10.1061/(ASCE)0733-9429(2003)129:12(1007)
  • Zhao, M., & Ghidaoui, M. S. (2006). Investigation of turbulence behavior in pipe transient using a k-ϵ model. Journal of Hydraulic Research, 44, 682–692. doi: 10.1080/00221686.2006.9521717

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.