884
Views
47
CrossRef citations to date
0
Altmetric
Research papers

Flow dynamics through a submerged bridge opening with overtopping

, , &
Pages 186-195 | Received 23 Mar 2014, Accepted 21 Aug 2014, Published online: 22 Oct 2014

References

  • Biglari, B., & Sturm, T. W. (1998). Numerical modeling of flow around bridge abutments in compound channel. Journal of Hydraulic Engineering, ASCE, 124, 156–164. doi: 10.1061/(ASCE)0733-9429(1998)124:2(156)
  • Bomminayuni, S., & Stoesser, T. (2011). Turbulence statistics in an open-channel flow over a rough bed. Journal of Hydraulic Engineering, ASCE, 137, 1347–1358. doi: 10.1061/(ASCE)HY.1943-7900.0000454
  • Chan, R. K.-C., & Street, R. L. (1970). A computer study of finite-amplitude water waves. Journal of Computational Physics, 6(1), 68–94. doi: 10.1016/0021-9991(70)90005-7
  • Chrisohoides, A., Sotiropoulos, F., & Sturm, T. W. (2003). Coherent structures in flat-bed abutment flow: computational fluid dynamics simulations and experiments. Journal of Hydraulic Engineering, ASCE, 129, 177–186. doi: 10.1061/(ASCE)0733-9429(2003)129:3(177)
  • Gotvald, A. J., & McCallum, B. E. (2010). Epic flooding in Georgia. USGS Fact Sheet: 2010-3107
  • Guo, J., Zhang, T. C., Admiraal, D. M., & Bushra, A. (2009). Computational design tool for bridge hydrodynamic loading in inundated flows of Midwest Rivers. Report # MATC-UNL: 227.
  • Hong, S.-H., Sturm, T. W., & Stoesser, T. (2014). Prediction of Clear-Water Abutment Scour Depth in Compound Channel for Extreme Hydrologic Events. Journal of Hydraulic Engineering, ASCE, under review.
  • Hunt, J. C. R., Wray, A. A., & Moin, P. (1988). Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research, Stanford University. Report number: CTR-S88.
  • Kang, S., & Sotiropoulos, F. (2012). Numerical modeling of 3d turbulent free surface flow in natural waterways. Advances in Water Resources, 40, 23–36. doi: 10.1016/j.advwatres.2012.01.012
  • Kara, S., Stoesser, T., & Sturm, T. W. (2012). Turbulence statistics in compound channels with deep and shallow overbank flows. Journal of Hydraulic Research, 50, 482–493. doi: 10.1080/00221686.2012.724194
  • Kim, D., Kim, D., Kim, J. H., & Stoesser, T. (2010). Large eddy simulation of flow and solute transport in ozone contact chambers. ASCE Journal of Environmental Engineering, 136(1), 22–31. doi: 10.1061/(ASCE)EE.1943-7870.0000118
  • Kim, D., Kim, J. H., & Stoesser, T. (2013). Hydrodynamics, turbulence and solute transport in ozone contact chambers. Journal of Hydraulic Research, 51, 558–568. doi: 10.1080/00221686.2013.777681
  • Koken, M., & Constantinescu, G. (2008). An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel. Part I. Conditions corresponding to the initiation of the erosion and deposition process. Water Resources Research, 44, W08406, doi:10.1029/2007WR006489.
  • Koken, M., & Constantinescu, G. (2009). An investigation of the dynamics of coherent structures in a turbulent channel flow with a vertical sidewall obstruction. Physics of Fluids, 21, 085104, doi: 10.1063/1.3207859.
  • Koken, M., & Constantinescu, G. (2011). Flow and turbulence structure around a spur dike in a channel with a large scour hole. Water Resources Research, 47, W12511, doi: 10.1029/2011WR010710.
  • Lee, D., Nakagawa, H., Kawaike, K., Baba, Y., & Zhang, H. (2010). Inundation flow considering overflow due to water level rise by river structures. Annuals of Disaster Prevention Research Institute,, Kyoto University, No. 53 B.
  • Malavasi, S., & Guadagnini, A. (2003). Hydrodynamic loading on river bridges. Journal of Hydraulic Engineering, ASCE, 129, 854–861. doi: 10.1061/(ASCE)0733-9429(2003)129:11(854)
  • Malavasi, S., & Guadagnini, A. (2007). Interactions between a rectangular cylinder and a free-surface flow. Journal of Fluids and Structure, 23, 1137–1148. doi: 10.1016/j.jfluidstructs.2007.04.002
  • Melville, B. W. (1995). Bridge abutment scour in compound channels. Journal of Hydraulic Engineering, ASCE, 121, 863–868. doi: 10.1061/(ASCE)0733-9429(1995)121:12(863)
  • Nagata, N., Hosoda, T., Nakato, T., & Muramoto, Y. (2005). Three-dimensional numerical model for flow and bed deformation around river hydraulic structures. Journal of Hydraulic Engineering, ASCE, 131, 1074–1087. doi: 10.1061/(ASCE)0733-9429(2005)131:12(1074)
  • Nicoud, F., & Ducros, F. (1999). Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 62, 183–200. doi: 10.1023/A:1009995426001
  • Oliveto, G., & Hager, W. H. (2002). Temporal evolution of clear-water pier and abutment scour. Journal of Hydraulic Engineering, ASCE, 128, 811–820. doi: 10.1061/(ASCE)0733-9429(2002)128:9(811)
  • Osher, S., & Fedkiw, R. (2002). Level set methods and dynamic implicit surfaces. New York: Springer-Verlag.
  • Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1), 12–49. doi: 10.1016/0021-9991(88)90002-2
  • Papanicolaou, A. N., Kramer, C. M., Tsakiris, A. G., Stoesser, T., Bomminayuni, S., & Chen, Z. (2012). Effects of a fully submerged boulder within a boulder array on the mean and turbulent flow fields. Acta Geophysica, 60, 1502–1546. doi: 10.2478/s11600-012-0044-6
  • Paik, J., Ge, L., & Sotiropoulos, F. (2004). Toward the simulation of complex 3D shear flows using unsteady statistical turbulence models. International Journal of Heat and Fluid Flow, 25, 513–527. doi: 10.1016/j.ijheatfluidflow.2004.02.002
  • Paik, J., & Sotiropoulos, F. (2005). Coherent structure dynamics upstream of a long rectangular block at the side of a large aspect ratio channel. Physics of Fluids, 17, 115104. doi: 10.1063/1.2130743
  • Parola, A. C., Hagerty, D. J., and Kamojjal, S. (1998). Highway infrastructure damage caused by the 1993 upper Mississippi River basin flooding. Report No. NCHRP-417, Transportation Research Board, Washington, DC.
  • Picek, T., Havlik, A., Mattas, D., & Mares, K. (2007). Hydraulic calculation of bridges at high water stages. Journal of Hydraulic Research, 45, 400–406. doi: 10.1080/00221686.2007.9521773
  • Rodi, W., Constantinescu, G., & Stoesser, T. (2013). Large Eddy Simulation in hydraulics. IAHR Monograph. Oxford: CRC Press, Taylor & Francis Group. ISBN-10: 1138000247.
  • Sethian, J. A., & Smereka, P. (2003). Level set methods for fluid interfaces. Annual Review of Fluid Mechanics, 35, 341–372. doi: 10.1146/annurev.fluid.35.101101.161105
  • Shu, C.-W. (2009) High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Review, 51(1), 82–126. doi: 10.1137/070679065
  • Stoesser, T. (2010). Physically realistic roughness closure scheme to simulate turbulent channel flow over rough beds within the framework of LES. Journal Hydraulic Engineering, ASCE, 136, 812–819. doi: 10.1061/(ASCE)HY.1943-7900.0000236
  • Stoesser, T., Braun, C., Garcia-Villalba, M., & Rodi W. (2008). Turbulence structures in flow over two dimensional dunes. Journal of Hydraulics Engineering, ASCE, 134(1), 42–55. doi: 10.1061/(ASCE)0733-9429(2008)134:1(42)
  • Stoesser, T., & Nikora, V. (2008). Flow structure over square bars at intermediate submergence: Large Eddy Simulation (LES) study of bar spacing effect. Acta Geophysica, 56, 876–893. doi: 10.2478/s11600-008-0030-1
  • Sturm, T. W. (2006). Scour around bankline and setback abutments in compound channels. Journal Hydraulic Engineering, ASCE, 132(1), 21–32. doi: 10.1061/(ASCE)0733-9429(2006)132:1(21)
  • Sussman, M., Smereka, P., & Osher, S. (1994). A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 114(1), 146–159. doi: 10.1006/jcph.1994.1155
  • Teruzzi, A., Ballio, F., & Armenio, V. (2009). Turbulent stresses at the bottom surface near an abutment: Laboratory-scale numerical experiment. Journal Hydraulic Engineering, ASCE, 135, 106–117. doi: 10.1061/(ASCE)0733-9429(2009)135:2(106)
  • Yue, W., Lin, C. L., & Patel, V. C. (2003). Numerical simulation of unsteady multidimensional free surface motions by level set method. International Journal for Numerical Methods in Fluids, 42, 853–884. doi: 10.1002/fld.555
  • Zhao, H., Chan, T., Merriman, B., & Osher, S. (1996). A variational level set approach to multiphase motion. Journal of Computational Physics, 127(1), 179–195. doi: 10.1006/jcph.1996.0167

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.