475
Views
3
CrossRef citations to date
0
Altmetric
Research papers

Determination of hydraulic losses in the flow passage between the guide vanes and runner of the Kaplan turbine

Pages 349-361 | Received 31 Aug 2015, Accepted 16 Oct 2016, Published online: 18 Nov 2016

References

  • Aschenbrenner, T., Gohringer, M., & Moser, W. (2000). Numerical and experimental flow analysis in a Kaplan turbine. Proceedings 20th IAHR Symposium on Hydraulic Machinery and Systems, North Carolina.
  • Babić, M. (1980). Theoretical and experimental investigations of flow structure in the vaneless region between guide vane and runner of Kaplan turbine (Doctoral dissertation). University of Belgrade, Faculty of Mechanical Engineering, Belgrade. (Serbian).
  • Balint, D. (2008). Numerical computing methods for three-dimensional flows in the distributor and the runner of Kaplan turbine (Doctoral dissertation). Universitatea Politehnica, Timisoara. (Romanian).
  • Benišek, M. H., Ilić, D. B., Čantrak, Đ. S., & Božić, I. O. (2010). Investigation of the turbulent swirl flows in a conical diffuser. Thermal Science, 14(Issue suppl.), 141–154. doi: 10.2298/TSCI100630026B
  • Božić, I. (2012). Theoretical and experimental investigation of the energy losses distribution in the hydraulic axial turbines (Doctoral dissertation). University of Belgrade, Faculty of Mechanical Engineering, Belgrade. (Serbian). doi:doi: 10.2298/BG20121127BOZIC
  • Castorph, D., & Raabe, J. (1974). Measurement of unsteady pressure, unsteady relative and absolute velocity field of a Kaplan runner by means of an electronic multi-miniature-probe as a basic contribution to research of unsteady runner load. Proceedings 7th IAHR Symposium 7E, Section for hydraulic machinery equipment and cavitation, Vienna, 521–531.
  • Ecole Polytechnique Fédérale de Lausanne. (2011). Official model test report – HPP Djerdap 1, test № 535, (March–May 2008). Lausanne: Laboratoire de Machines Hydrauliques.
  • Etinberg, I. E. (1965). Theory and calculation of flow in axial hydraulic turbine passages. Leningrad: Mashinostroenie. (Russian).
  • Höfler, E., Gale, J., & Bergant, A. (2011). Hydraulic design and analysis of the Saxo-type vertical axial turbine. Transactions of the Canadian Society for Mechanical Engineering, 35(1), 119–143. Retrieved from http://www.tcsme.org/Papers/Vol35/Vol35No1Paper8.pdf
  • International Electrotechnical Commission. (1999). IEC 60193:1999. Hydraulic turbines, storage pumps and pump-turbines-Model acceptance tests. Geneva: IEC.
  • Jost, D., Lipej, A., Oberdank, K., Jamnik, M., & Velensek, B. (1996). Numerical flow analysis of Kaplan turbine. Proc. 18th IAHR Symposium on Hydraulic Machinery and Cavitation, Valencia, 1123–1132.
  • Jošt, D., Škerlavaj, A., & Lipej, A. (2014). Improvement of efficiency prediction for a Kaplan turbine with advanced turbulence models. Strojniški vestnik – Journal of Mechanical Engineering, 60(2), 124–134. doi: 10.5545/sv-jme.2013.1222
  • Kirstein, F. C., & Backström, T. W. (2006). Flow through a solar chimney power plant collector-to-chimney transition section. ASME Journal of Solar Energy Engineering, 128(3), 312–317. doi:doi: 10.1115/1.2210502
  • Kviatkovski, V. S. (1951). Flow processes of axial hydraulic turbine (Investigation of flow in axial hydraulic turbines). Moscow: Mashgiz. (Russian).
  • Kviatkovski, V. S. (1952). Flow processes in axial hydraulic turbine (Methods of calculation of hydraulic axial turbines blades). Moscow: Mashgiz. (Russian).
  • Leuckel, W. (1969). Swirl intensities, swirl types and energy losses of different swirl generating devices (Technical Report No. G02/a/16). Ijmuiden: International Flame Research Foundation.
  • Lipej, A. (2015). Numerical prediction of torque on guide vanes in a reversible pump-turbine. Journal of Multidisciplinary Engineering Science and Technology (JMEST), 2(6), 1616–1621. Retrieved from http://www.jmest.org/wp-content/uploads/JMESTN42350873.pdf
  • Liu, S. H., Shao, J., Wu, S. F., & Wu, Y. L. (2008). Numerical simulation of pressure fluctuation in Kaplan turbine. Science in China Series E: Technological Sciences, 51(8), 1137–1148. doi:doi: 10.1007/s11431-008-0159-9
  • Menter, F. R. (1994). Two-equation Eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. doi:doi: 10.2514/3.12149
  • Mulu, B. G., Cervantes, M. J., Devals, C., Vu, T. C., & Guibault, F. (2015). Simulation-based investigation of unsteady flow in near-hub region of a Kaplan Turbine with experimental comparison. Engineering Applications of Computational Fluid Mechanics, 9(1), 139–156. doi:doi: 10.1080/19942060.2015.1004816
  • Muntean, S., Balint, D., Susan-Resiga, R. F., Bernad, S., & Anton, I. (2005). A numerical study of the 3D swirling flow upstream the Kaplan turbine runner at off-design operating conditions. Scientific Bulletin of the “Politehnica” University of Timisoara, Transactions on Mechanics, 50(64), 97–104. Retrieved from http://ms.utt.ro/accord-fluid/workshop2005/docs/11_Muntean1.pdf
  • Muntean, S., Balint, D., Susan-Resiga, R. F., Bernad, S., & Anton, I. (2006). Analytical representation of the swirling flow upstream the Kaplan turbine runner for variable guide vane opening. Proceedings 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, Paper 151, pp. 1–12.
  • Nikitin, A. A. (1982). Results of experimental research of ring curved channels of turbomachinery. Energomashinostroenie, 10, 18–20. (Russian).
  • Nilsson, H. (2002). Numerical investigations of turbulent flow in water turbines (Doctoral dissertation). Department of Thermo and Fluid Dynamics, Chalmers University of Technology, Gothenburg.
  • Obradović, D. (1962). A grapho-analytic method for determining velocities and circulations behind the distributor of high specific speed water turbines. Belgrade: University of Belgrade, Faculty of Mechanical Engineering.
  • Peng, G. (2005). A practical combined computation method of mean through-flow for 3D inverse design of hydraulic turbomachinery blades. ASME Journal of Fluids Engineering, 127(6), 1183–1190. doi:doi: 10.1115/1.2062787
  • Roache, P. J. (1994). Perspective: A method for uniform reporting of grid refinement studies. ASME Journal of Fluids Engineering, 116(3), 405–413. doi:doi: 10.1115/1.2910291
  • Shao, J., Luo, X., Wu, X., & Liu, S. (2006). Three-dimensional turbulent simulation of the internal flow in a Kaplan turbine. Proceedings 23th IAHR Symposium on Hydraulic Machinery and Systems, Yokohama.
  • Speziale, C. G., Sarkar, S., & Gatski, T. B. (1991). Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. Journal of Fluid Mechanics, 227, 245–272. doi:doi: 10.1017/S0022112091000101
  • Susan-Resiga, R. F., Muntean, S., Avellan, F., & Anton, I. (2011). Mathematical modelling of swirling flow in hydraulic turbines for the full operating range. Applied Mathematical Modelling, 35(10), 4759–4773. doi: 10.1016/j.apm.2011.03.052
  • Vu, T. C., & Retieb, S. (2002). Accuracy assessment of current CFD tools to predict hydraulic turbine efficiency hill chart. Proceedings 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne, 1, 193–198.
  • Weili, L., Jinting, J., Wei, X., & Mei, H. (2007). Numerical analysis of flow in the upstream of runner inlet region of Kaplan turbine. Transactions of the Chinese Society of Agricultural Engineering, 10, 106–111. doi: 10.3969/j.issn.1002-6819.2007.10.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.