2,077
Views
30
CrossRef citations to date
0
Altmetric
Forum

Self-similarity and Reynolds number invariance in Froude modelling

Pages 293-309 | Received 12 Jan 2016, Accepted 16 Oct 2016, Published online: 22 Nov 2016

References

  • Ali, M., & Abid, M. (2014). Self-similar behaviour of a rotor wake vortex core. Journal of Fluid Mechanics, 740, R1 1–12. doi: 10.1017/jfm.2013.636
  • Bachant, P., & Wosnik, M. (2016). Effects of Reynolds number on the energy conversion and near-wake dynamics of a high solidity vertical-axis cross-flow turbine. Energies, 9(2), 1–18. doi: 10.3390/en9020073
  • Barenblatt, G. I. (1996). Scaling, self-similarity, and intermediate asymptotics. Cambridge: Cambridge University Press.
  • Baroud, C. N., Plapp, B. B., She, Z.-S., & Swinney, H. L. (2002). Anomalous self-similarity in a turbulent rapidly rotating fluid. Physical Review Letters, 88(11), 114501-1–4. doi: 10.1103/PhysRevLett.88.114501
  • Batchelor, G. K. (1953). The theory of homogeneous turbulence. Cambridge: Cambridge University Press.
  • Cantwell, B. J. (2002). Introduction to symmetry analysis. Cambridge: Cambridge University Press.
  • Carazzo, G., Kaminski, E., & Tait, S. (2006). The route to self-similarity in turbulent jets and plumes. Journal of Fluid Mechanics, 547, 137–148. doi: 10.1017/S002211200500683X
  • Carr, K. J., Ercan, A., & Kavvas, M. L. (2015). Scaling and self-similarity of one-dimensional unsteady suspended sediment transport with emphasis on unscaled sediment material properties. Journal of Hydraulic Engineering-ASCE, 141(5), 04015003-1–9. doi: 10.1061/(ASCE)HY.1943-7900.0000994
  • Champagne, F. H., Pao, Y. H., & Wygnanski, I. J. (1976). On the two-dimensional mixing region. Journal of Fluid Mechanics, 74(part 2), 209–250. doi: 10.1017/S0022112076001778
  • Chanson, H., & Carosi, G. (2007). Turbulent time and length scale measurements in high-velocity open channel flows. Experiments in Fluids, 42(3), 385–401. doi: 10.1007/s00348-006-0246-2
  • Chaplin, J. R., & Subbiah, K. (1997). Large scale horizontal cylinder forces in waves and currents. Applied Ocean Research, 19(3–4), 211–223. doi: 10.1016/S0141-1187(97)00021-7
  • Craske, J., Debugne, A. L. R., & van Reeuwijk, M. (2015). Shear-flow dispersion in turbulent jets. Journal of Fluid Mechanics, 781, 28–51. doi: 10.1017/jfm.2015.417
  • Dodds, P. S., & Rothman, D. H. (2000). Scaling, universality, and geomorphology. Annual Review of Earth and Planetary Sciences, 28, 571–610. doi: 10.1146/annurev.earth.28.1.571
  • Drożdż, S., Grümmer, F., Ruf, F., & Speth, J. (2003). Log-periodic self-similarity: An emerging financial law? Physica A: Statistical Mechanics and its Applications, 324(1–2), 174–182. doi: 10.1016/S0378-4371(02)01848-4
  • Ercan, A., Kavvas, M. L., & Haltas, I. (2014). Scaling and self-similarity in one-dimensional unsteady open channel flow. Hydrological Processes, 28(5), 2721–2737. doi: 10.1002/hyp.9822
  • Foss, J. F., Panton, R., & Yarin, A. L. (2007). Nondimensional representation of the boundary-value problem. In C. Tropea, A. L. Yarin, & J. F. Foss (Eds.), Springer handbook of experimental fluid mechanics, Part A, Chapter 2 (pp. 33–82). Heidelberg: Springer.
  • Fourier, J. (1822). Theorie analytique de la chaleur [The analytical theory of heat]. Paris: Firmin Didot.
  • Frisch, U. (1995). Turbulence: The legacy of A.N. Kolmogorov. Cambridge: Cambridge University Press.
  • Fuchs, H., & Hager, W. H. (2012). Scale effects of impulse wave run-up and run-over. Journal of Waterway, Port, Coastal, and Ocean Engineering-ASCE, 138(4), 303–311. doi: 10.1061/(ASCE)WW.1943-5460.0000138
  • George, W. K. (1989). The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In W. K. George & R. E. A. Arndt (Eds.), Advances in turbulence (pp. 39–73). New York: Hemisphere.
  • Gratton, J. (1991). Similarity and self similarity in fluid dynamics. Fundamentals of Cosmic Physics, 15, 1–106.
  • Gutmark, E., & Wygnanski, I. (1976). The planar turbulent jet. Journal of Fluid Mechanics, 73(part 3), 465–495. doi: 10.1017/S0022112076001468
  • Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293–306. doi: 10.1080/00221686.2011.578914
  • Heller, V., Hager, W. H., & Minor, H.-E. (2008). Scale effects in subaerial landslide generated impulse waves. Experiments in Fluids, 44(5), 691–703. doi: 10.1007/s00348-007-0427-7
  • Hughes, S. A. (1993). Physical models and laboratory techniques in coastal engineering. Advanced series on ocean engineering 7. London: World Scientific.
  • Hussein, H. J., Capp, S. P., & George, W. K. (1994). Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. Journal of Fluid Mechanics, 258, 31–75. doi: 10.1017/S002211209400323X
  • Jonker, H. J. J., van Reeuwijk, M., Sullivan, P. P., & Patton, E. G. (2013). On the scaling of shear-driven entrainment: A DNS study. Journal of Fluid Mechanics, 732, 150–165. doi: 10.1017/jfm.2013.394
  • Kamphuis, J. W. (1974). Practical scaling of coastal models. In Proceedings of 14th Coastal engineering conference (Vol. 3, pp. 2086–2101). New York, NY: ASCE.
  • Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Doklady Akademiia Nauk SSSR, 30, 299–303 (in Russian).
  • Kundu, P. K. (1981). Self-similarity in stress-driven entrainment experiments. Journal of Geophysical Research, 86(C3), 1979–1988. doi: 10.1029/JC086iC03p01979
  • Le Méhauté, B. (1990). Similitude. In B. Le Méhauté & D. M. Hanes (Eds.), Ocean engineering science: The sea (pp. 955–980). New York, NY: Wiley.
  • Mandelbrot, B. B. (1983). The fractal geometry of nature. San Francisco, CA: Henry Holt and Company.
  • Massey, B. S. (1989). Mechanics of fluids (6th ed.). London: Chapman and Hall.
  • Morton, B. R. (1971). The choice of conservation equations for plume models. Journal of Geophysical Research, 76(30), 7409–7416. doi: 10.1029/JC076i030p07409
  • Myers, L. E., & Bahaj, A. S. (2012). An experimental investigation simulating flow effects in first generation marine current energy converter arrays. Renewable Energy, 37(1), 28–36. doi: 10.1016/j.renene.2011.03.043
  • Nedić, J., Vassilicos, J. C., & Ganapathisubramani, B. (2013). Axisymmetric turbulent wakes with new nonequilibrium similarity scalings. Physical Review Letters, 111, 144503- 1–5. doi: 10.1103/PhysRevLett.111.144503
  • Parsons, J. D., & García, M. H. (1998). Similarity of gravity current fronts. Physics of Fluids, 10(12), 3209–3213. doi: 10.1063/1.869848
  • Pope, S. B. (2000). Turbulent flows. Cambridge: Cambridge University Press.
  • Redford, J. A., Castro, I. P., & Coleman, G. N. (2012). On the universality of turbulent axisymmetric wakes. Journal of Fluid Mechanics, 710, 419–452. doi: 10.1017/jfm.2012.371
  • Richardson, L. F. (1922). Weather prediction by numerical process. Cambridge: Cambridge University Press.
  • Schmocker, L., & Hager, W. H. (2009). Modelling dike breaching due to overtopping. Journal of Hydraulic Research, 47(5), 585–597. doi: 10.3826/jhr.2009.3586
  • Schultz, M. P., & Flack, K. A. (2013). Reynolds-number scaling of turbulent channel flow. Physics of Fluids, 25, 025104-1–13. doi: 10.1063/1.4791606
  • Shields, A. (1936). Anwendung der Ähnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung [Application of similarity principles and turbulence research to bed-load movement]. Mitteilungen der Preussischen Versuchsanstalt fur Wasserbau und Schiffbau, Berlin (in German).
  • Simpson, J. E. (1997). Gravity currents – in the environment and the laboratory. Cambridge: Cambridge University Press.
  • Smits, A. J., McKeon, B. J., & Marusic, I. (2011). High-Reynolds number wall turbulence. Annual Review of Fluid Mechanics, 43, 353–375. doi: 10.1146/annurev-fluid-122109-160753
  • Sreenivasan, K. R. (1981). Approach to self-preservation in plane turbulent wakes. AIAA Journal, 19(10), 1365–1367. doi: 10.2514/3.7870
  • Taylor, G. (1954). The dispersion of matter in turbulent flow through a pipe. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 223(1155), 446–468. doi: 10.1098/rspa.1954.0130
  • Teixeira, E. C., & Rauen, W. B. (2014). Effects of scale and discharge variation on similitude and solute transport in water treatment tanks. Journal of Environmental Engineering-ASCE, 140(1), 30–39. doi: 10.1061/(ASCE)EE.1943-7870.0000772
  • Toombes, L., & Chanson, H. (2007). Surface waves and roughness in self-aerated supercritical flow. Environmental Fluid Mechanics, 7(3), 259–270. doi: 10.1007/s10652-007-9022-y
  • Uberoi, M. S., & Freymuth, P. (1970). Turbulent energy balance and spectra of the axisymmetric wake. Physics of Fluids, 13(9), 2205–2210. doi: 10.1063/1.1693225
  • Vassilicos, J. C. (2015). Dissipation in turbulent flows. Annual Review of Fluid Mechanics, 47, 95–114. doi: 10.1146/annurev-fluid-010814-014637
  • Wang, L. (1998). Self-similarity of fluid flows. Applied Physics Letters, 73(10), 1329–1330. doi: 10.1063/1.121885
  • Wygnanski, I., Champagne, F., & Marasli, B. (1986). On the large-scale structures in two-dimensional, small-deficit, turbulent wakes. Journal of Fluid Mechanics, 168, 31–71. doi: 10.1017/S0022112086000289
  • Wygnanski, I., & Fiedler, H. E. (1969). Some measurements in the self-preserving jet. Journal of Fluid Mechanics, 38(part 3), 577–612. doi: 10.1017/S0022112069000358

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.