373
Views
12
CrossRef citations to date
0
Altmetric
Research papers

Wetting and drying numerical treatments for the Roe Riemann scheme

ORCID Icon, ORCID Icon & ORCID Icon
Pages 256-267 | Received 04 Sep 2015, Accepted 25 Jan 2017, Published online: 01 Mar 2017

References

  • Audusse, E., & Bristeau, M. O. (2005). A well-balanced positivity preserving “second-order” scheme for shallow water flows on unstructured meshes. Journal of Computational Physics, 206(1), 311–333. doi: 10.1016/j.jcp.2004.12.016
  • Aureli, F., Maranzoni, A., Mignosa, P., & Ziveri, C. (2008). A weighted surface-depth gradient method for the numerical integration of the 2D shallow water equations with topography. Advances in Water Resources, 31, 962–974. doi: 10.1016/j.advwatres.2008.03.005
  • Bates, P. D., & Hervouet, J. M. (1999). A new method for moving-boundary hydrodynamic problems in shallow water. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 455(1988), 3107–3128. doi: 10.1098/rspa.1999.0442
  • Begnudelli, L., & Sanders, B. F. (2006). Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying. Journal of Hydraulic Engineering, 132, 371–384. doi: 10.1061/(ASCE)0733-9429(2006)132:4(371)
  • Brufau, P., García-Navarro, P., & Vázquez-Cendón, M. E. (2004). Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography. International Journal for Numerical Methods in Fluids, 45, 1047–1082. doi: 10.1002/fld.729
  • Brufau, P., Vázquez-Cendón, M. E., & García-Navarro, P. (2002). A numerical model for the flooding and drying of irregular domains. International Journal for Numerical Methods in Fluids, 39, 247–275. doi: 10.1002/fld.285
  • Buffard, T., Gallouët, T., & Hérard, J. M. (2000). A sequel to a rough Godunov scheme: Application to real gases. Computers & Fluids, 29, 813–847. doi: 10.1016/S0045-7930(99)00026-2
  • Castro, M. J., Ferreiro Ferreiro, A. M., García-Rodríguez, J. A., González-Vida, J. M., Macías, J., Parés, C., Vázquez-Cendón, M. E. (2005). The numerical treatment of wet/dry fronts in shallow flows: Application to one-layer and two-layer systems. Mathematical and Computer Modelling, 42, 419–439. doi: 10.1016/j.mcm.2004.01.016
  • Duran, A., Liang, Q., & Marche, F. (2013). On the well-balanced numerical discretization of shallow water equations on unstructured meshes. Journal of Computational Physics, 235, 565–586. doi: 10.1016/j.jcp.2012.10.033
  • Einfeldt, B., Munz, C., Roe, P., & Sjögreen, B. (1991). On Godunov-type methods near low densities. Journal of Computational Physics, 92, 273–295. doi: 10.1016/0021-9991(91)90211-3
  • Godunov, S., Zabrodin, A., & Prokopov, G. (1961). A computational scheme for two-dimensional nonstationary problems of gas dynamics and calculation of the flow from a shock wave approaching a stationary state. Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 1(6), 1020–1050.
  • Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 49(3), 357–393. doi: 10.1016/0021-9991(83)90136-5
  • Heniche, M., Secretan, Y., Boudreau, P., & Leclerc, M. (2000). A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries. Advances in Water Resources, 23(4), 359–372. doi: 10.1016/S0309-1708(99)00031-7
  • Hof, B., & Vollebregt, E. (2005). Modelling of wetting and drying of shallow water using artiÿcial porosity. International Journal for Numerical Methods in Fluids, 48, 1199–1217. doi: 10.1002/fld.959
  • Hunter, N., Horritt, M., Bates, P., Wilson, M., & Werner, M. (2005). An adaptive time step solution for raster-based storage cell modelling of floodplain inundation. Advances in Water Resources, 28(9), 975–991. doi: 10.1016/j.advwatres.2005.03.007
  • Kärnä, T., de Brye, B., Gourgue, O., Lambrechts, J., Comblen, R., Legat, V., & Deleersnijder, E. (2011). A fully implicit wetting–drying method for DG-FEM shallow water models, with an application to the Scheldt Estuary. Computer Methods in Applied Mechanics and Engineering, 200(5–8), 509–524. doi: 10.1016/j.cma.2010.07.001
  • Leandro, J., Chen, A., & Schumann, A. (2014). A 2D parallel diffusive wave model for floodplain inundation with variable time step (P-DWave). Journal of Hydrology, 517, 250–259. doi: 10.1016/j.jhydrol.2014.05.020
  • Leandro, J., Schumann, A., & Pfister, A. (2016). A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling. Journal of Hydrology, 535, 356–365. doi: 10.1016/j.jhydrol.2016.01.060
  • Liang, Q., & Marche, F. (2009). Numerical resolution of well-balanced shallow water equations with complex source terms. Advances in Water Resources, 32(6), 873–884. doi: 10.1016/j.advwatres.2009.02.010
  • Martins, R., Leandro, J., & Djordjević, S. (2015). A well balanced Roe Scheme for the local inertial equations with an unstructured mesh. Advances in Water Resources, 83, 351–363. doi: 10.1016/j.advwatres.2015.07.007
  • Martins, R., Leandro, J., & Djordjević, S. (2016). Influence of sewer network models on urban flood damage assessment based on coupled 1d/2d models. Journal of Flood Risk Management. doi: 10.1111/jfr3.12244
  • Medeiros, S., & Hagen, S. (2013). Review of wetting and drying algorithms for numerical tidal flow models. International Journal for Numerical Methods in Fluids, 71, 473–487. doi: 10.1002/fld.3668
  • Murillo, J., & García-Navarro, P. (2010). Weak solutions for partial differential equations with source terms: Application to the shallow water equations. Journal of Computational Physics, 229(11), 4327–4368. doi: 10.1016/j.jcp.2010.02.016
  • Murillo, J., García-Navarro, P., Burguete, J., & Brufau, P. (2006). A conservative 2D model of inundation flow with solute transport over dry bed. International Journal for Numerical Methods in Fluids, 52(10), 1059–1092. doi: 10.1002/fld.1216
  • Neal, J., Villanueva, I., Wright, N., Willis, T., Fewtrell, T., & Bates, P. (2012). How much physical complexity is needed to model flood inundation? Hydrological Processes, 26(15), 2264–2282. doi: 10.1002/hyp.8339
  • Néelz, S., & Pender, G. (2012). Benchmarking of 2D hydraulic modelling packages (Tech. Rep.). Bristol: Environment Agency.
  • Nikolos, I., & Delis, A. (2009). An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography. Computer Methods in Applied Mechanics and Engineering, 198(47–48), 3723–3750. doi: 10.1016/j.cma.2009.08.006
  • Song, L., Zhou, J., Guo, J., Zou, Q., & Liu, Y. (2011). A robust well-balanced finite volume model for shallow water flows with wetting and drying over irregular terrain. Advances in Water Resources, 34(7), 915–932. doi: 10.1016/j.advwatres.2011.04.017
  • Xing, Y., & Shu, C. W. (2011). High-order finite volume WENO schemes for the shallow water equations with dry states. Advances in Water Resources, 34(8), 1026–1038. doi: 10.1016/j.advwatres.2011.05.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.