695
Views
7
CrossRef citations to date
0
Altmetric
Research papers

Process-based soil erodibility estimation for empirical water erosion models

, , &
Pages 181-195 | Received 08 Sep 2016, Accepted 24 Mar 2017, Published online: 21 Jun 2017

References

  • Alberts, E. E., Nearing, M. A., Weltz, M. A., Risse, L. M., Pierson, F. B., Zhang, X. C., … Simanton, J. R. (1995). Chapter 7: Soil component. In D. C. Flanagan & M. A. Nearing (Eds.), USDA water erosion prediction project hillslope and watershed model documentation (NSERL Report No. 10). West Lafayette, IN: USDA-ARS National Soil Erosion Research Laboratory.
  • Al-Durrah, M. M., & Bradford, J. M. (1982). The mechanism of raindrop splash on soil surfaces. Soil Science Society of America Journal, 46, 1086–1090. doi: 10.2136/sssaj1982.03615995004600050040x
  • Amézketa, E. (1999). Soil aggregate stability: A review. Journal of Sustainable Agriculture, 14, 83–151. http://dx.doi.org/10.1300/J064v14n02_08
  • Bajracharya, R. M., & Lal, R. (1992). Seasonal soil loss and erodibility variation on a Miamian silt loam soil. Soil Science Society of America Journal, 56, 1560–1565. doi: 10.2136/sssaj1992.03615995005600050037x
  • Blake, G. R., & Gilman, R. D. (1970). Thixotropic changes with aging of synthetic soil aggregates. Soil Science Society of America Journal, 34, 561–564. doi: 10.2136/sssaj1970.03615995003400040009x
  • Blanco, H., & Lal, R. (2010). Principles of soil conservation and management. Dordrecht: Springer, pp. 81–105.
  • Bouyoucos, G. J. (1935). The clay ratio as a criterion of the susceptibility of soils to erosion. Journal of the American Society of Agronomy, 27, 738–741. doi: 10.2134/agronj1935.00021962002700090001x
  • Bryan, R. B. (1971). The efficiency of aggregation indices in the comparison of some English and Canadian soils. Journal of Soil Science, 22, 166–178. doi: 10.1111/j.1365-2389.1971.tb01604.x
  • Bryan, R. B. (2000). Soil erodibility and processes of water erosion on hillslope. Geomorphology, 32, 385–415. doi: 10.1016/S0169-555X(99)00105-1
  • Chenu, C., & Guérif, J. (1991). Mechanical strength of clay minerals as influenced by an adsorbed polysaccharide. Soil Science Society of America Journal, 55, 1076–1080. doi: 10.2136/sssaj1991.03615995005500040030x
  • Chenu, C., Le Bissonnais, Y., & Arrouays, D. (2000). Organic matter influence on clay wettability and soil aggregate stability. Soil Science Society of America Journal, 64, 1479–1486. doi: 10.2136/sssaj2000.6441479x
  • Dalal, R. C., & Bridge, B. J. (1996). Aggregation and organic matter storage in subhumid and semi-arid soils. In M. R. Carter, & B. A. Stewart (Eds.), Structure and organic matter storage in agricultural soils. Advances in soil science (pp. 263–307). Boca Raton, FL: CRC Press.
  • Dregne, H. E., & Chou, N. T. (1992). Global desertification dimensions and costs, in degradation and restoration of arid lands. Lubbock: Texas Tech University.
  • Elliot, W. J., Liebenow, A. M., Laflen, J. M., & Kohl, K. D. (1989). A compendium of soil erodibility data from WEPP cropland soil field erodibility experiments 1987 & 88 (NSERL Report No. 3). The Ohio State University and USDA-Agricultural Research Service. West Lafayette, IN: National Soil Erosion Research Laboratory.
  • Erpul, G., Gabriels, D., Cornelis, W. M., Samray, H. N., & Guzelordu, T. (2008). Sand detachment under rains with varying angle of incidence. Catena, 72, 413–422. doi: 10.1016/j.catena.2007.07.008
  • Erpul, G., Gabriels, D., & Norton, L. D. (2004). Wind effects on sediment transport by raindrop-impacted shallow flow: a wind-tunnel study. Earth Surface Processes and Landforms, 29, 955–967. doi: 10.1002/esp.1077
  • Erpul, G., Gabriels, D., & Norton, L. D. (2005). Sand detachment by wind-driven raindrops. Earth Surface Processes and Landforms, 30, 241–250. doi: 10.1002/esp.1178
  • Erpul, G., Gabriels, D., Norton, D., Flanagan, D. C., Huang, C., & Visser, S. M. (2013a). Mechanics of interrill erosion with wind-driven rain. Earth Surface Processes and Landforms, 38(2), 160–168. doi: 10.1002/esp.3280
  • Erpul, G., Gabriels, D., Norton, D., Flanagan, D. C., Huang, C., & Visser, S. M. (2013b). Raindrop and flow interactions for interrill erosion with wind-driven rain (WDR). Journal of Hydraulic Research, 51(5), 548–557. doi: 10.1080/00221686.2013.778339
  • Erpul, G., Norton, L. D., & Gabriels, D. (2003a). The effect of wind on raindrop impact and rainsplash detachment. Transactions of American Society of Agricultural Engineering, 45(6), 51–62. doi: 10.13031/2013.12548
  • Erpul, G., Norton, L. D., & Gabriels, D. (2003b). Sediment transport from interrill areas under wind-driven rain. Journal of Hydrology, 276, 184–197. doi: 10.1016/S0022-1694(03)00070-2
  • Flanagan, D. C., Ascough, J. C., Nearing, M. A., & Laflen, J. M. (2001). The water erosion prediction project (WEPP) model. In R. S. Harmon & W. W. Doe, III (Eds.), Landscape erosion and evolution modeling (pp. 145–199). New York: Kluwer Academic/Plenum.
  • Flanagan, D. C., Gilley, J. E., & Franti, T. G. (2007). Water erosion prediction project (WEPP): development history, model capabilities, and future enhancements. Transactions of the ASABE, 50, 1603–1612.
  • Flanagan, D. C., & Nearing, M. A. (Eds.). (1995). USDA-water erosion prediction project: Hillslope profile and watershed model documentation (NSERL Report No. 10). West Lafayette, IN: USDA-ARS National Soil Erosion Research Laboratory.
  • Food and Agriculture Organization (FAO). (2011). The state of the world’s land and water resources for food and agriculture. Managing systems at risk. Abingdon: Earthscan and FAO.
  • Food and Agriculture Organization (FAO) & Intergovernmental Technical Panel on Soils (ITPS). (2015). Status of the world’s soil resources (SWSR) – Main report. Rome: FAO and ITPS.
  • Foster, G. R. (1982). Modeling the erosion process. In C. T. Hahn (Eds.), Hydrologic modeling of small watersheds (pp. 295–380. St Joseph, MI: American Society of Agricultural Engineers.
  • Foster, G. R., Flanagan, D. C., Nearing, M. A., Lane, L. J., Risse, L. M., & Finkner, S. C. (1995). Chapter 11.1-11.12: Hillslope erosion component. In D. C. Flanagan & M. A. Nearing (Eds.), USDA water erosion prediction project hillslope and watershed model documentation (NSERL Report No. 10). West Lafayette, IN: USDA-ARS National Soil Erosion Research Laboratory.
  • Foster, G. R., & Lane, L. J. (1987). User requirements USDA-Water Erosion Prediction Project (WEPP) (NSERL Report No. 1). West Lafayette, IN: USDA-ARS National Soil Erosion Research Laboratory.
  • Grissinger, E. H. (1966). Resistance of selected clay systems to erosion by water. Water Resources Research, 2(1), 131–138. doi: 10.1029/WR002i001p00131
  • Grissinger, E. H. (1972). Laboratory studies of the erodibility of cohesive materials. Proceedings Mississippi water resources conference, Water Resources Research Institute, Mississippi State University State College, Mississippi, USA.
  • Hanson, G. J., Cook, K. R., & Simon, A. (1999, August). Determining erosion resistance of cohesive materials. American society of civil engineers, 1999 international water resources engineering conference, Seattle, WA, USA.
  • Huang, C., Bradford, J. M., & Cushman, J. H. (1982). A numerical study of raindrop impact phenomena: The rigid case. Soil Science Society of America Journal, 46(1), 14–19. doi: 10.2136/sssaj1982.03615995004600010003x
  • Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (ed.), Methods of soil analysis. Part 1 (p. 425–442, 2nd ed.). Madison, WI: ASA and SSSA.
  • Kinnell, P. I. A. (1991). The effect of flow depth on sediment transport induced by raindrops impacting shallow flows. Transactions of the ASAE, 34, 161–168. doi: 10.1002/hyp.5788
  • Kinnell, P. I. A. (1993). Interrill erodibilities based on the rainfall intensity flow discharge erosivity factor. Australian Journal of Soil Research, 31, 319–332. doi: 10.1071/SR9930319
  • Knapen, A., Poesen, J., Govers, G., Gyssels, G., & Nachtergaele, J. (2007). Resistance of soils to concentrated flow erosion: A review. Earth-Science Reviews, 80(1–2), 75–109. doi: 10.1016/j.earscirev.2006.08.001
  • Laflen, J. M., Lane, L. J., & Foster, G. R. (1991). WEPP: A new generation of erosion prediction technology. Journal of Soil and Water Conservation, 46, 34–38.
  • Lal, R. (1990). Soil erosion in the tropics: Principles and management. New York: McGraw-Hill.
  • Lane, L. J., & Nearing, M. A. (Eds.). (1989). USDA-water erosion prediction project: Hillslope profile model documentation (NSERL Report No. 2). West Lafayette, IN: USDA-ARS National Soil Erosion Research Laboratory.
  • Le Bissonnais, Y. (1990). Crust micromorphology and runoff generation on silty soil materials during different seasons. In R. B. Bryan (Eds.), Soil erosion: Experiments and models (pp. 11–16). Cremlingen: Catena Verlag.
  • Le Bissonnais, Y. (1996). Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 47, 425–437. doi: 10.1111/j.1365-2389.1996.tb01843.x
  • Le Bissonnais, Y., Renaux, B., & Delouche, H. (1995). Interactions between soil properties and moisture content in crust formation, runoff and interrill erosion from tilled loess soils. Catena, 25, 33–46. doi: 10.1016/0341-8162(94)00040-L
  • Le Bissonnais, Y., & Singer, M. (1992). Crusting, runoff and erosion response to soil water content and successive rainfalls. Soil Science Society of America Journal, 56, 1898–1903. doi: 10.2136/sssaj1992.03615995005600060042x.
  • Loch, R. J., & Foley, J. L. (1994). Measurement of aggregate breakdown under rain – comparison with tests of water stability and relationships with field measurements of infiltration. Australian Journal of Soil Research, 32, 701–720. doi: 10.1071/SR9940701
  • Luk, S. H. (1985). Effect of antecedent soil moisture content on rainwash erosion. Catena, 12, 129–139. doi: 10.1016/0341-8162(85)90005-0
  • Middleton, H. E. (1930). Properties of soils which influence soil erosion. USDA Technical Bulletin, 178, 16 pp.
  • Millennium Ecosystem Assessment (MEA). (2005). Ecosystems and human well-being: Desertification synthesis. Washington, DC: World Resource Institute.
  • Moss, A. J. (1991). Rain impact soil crust. I. Formation on a granite derived soil. Australian Journal of Soil Research, 29, 271–289. doi: 10.1071/SR9910271
  • Moss, A. J., & Green, P. (1983). Movement of solids in air and water by raindrop impact. Effects of drop-size and water-depth variations. Australian Journal of Soil Research, 21, 373–382. doi: 10.1071/SR9830257
  • Nachtergaele, J., & Poesen, J. (2002). Spatial and temporal variations in resistance of loess-derived soils to ephemeral gully erosion. European Journal of Soil Science, 53(3), 449–463. doi: 10.1046/j.1365-2389.2002.00443.x
  • Nearing, M. A., Foster, G. R., Lane, L. J., & Finkner, S. C. (1989). A process-based soil erosion model for USDA-water erosion prediction project technology. Transactions of the ASAE, 32, 1587–1593. doi: 10.13031/2013.31195
  • Nearing, M. A., Lane, L. J., Alberts, E. E., & Laflen, J. M. (1990). Prediction technology for soil erosion by water: Status and research needs. Soil Science Society of America Journal, 54, 1702–1711. doi: 10.2136/sssaj1990.03615995005400060033x
  • Nicks, A. D., Lane, L. J., Gander, G. A. (1995). Weather generator. In D. C. Flanagan, & M. A. Nearing (Eds.), USDA-water erosion prediction project (WEPP) hillslope profile and watershed model documentation (Chap. 2) (NSERL Report No. 10). West Lafayette, IN: USDA Agricultural Research Service.
  • Nouwakpo, S. K., Huang, C., Bowling, L., & Owens, P. (2010). Impact of vertical hydraulic gradient on rill erodibility and critical shear stress. Soil Science Society of America Journal, 74, 1914–1921. doi: 10.2136/sssaj2009.0096
  • Oades, J. M. (1993). The role of biology in the formation, stabilization and degradation of soil structure. Geoderma, 56, 377–400. doi: 10.1016/0016-7061(93)90123-3
  • Oldeman, L. R. (1991). Global extent of soil degradation (pp. 19–36) (Biannual report). Wageningen: International Soil Reference and Information Center.
  • Panabokke, C. R., & Quirk, J. P. (1957). Effect of initial water content on the stability of soil aggregates in water. Soil Science, 83, 185–196.
  • Parsons, A. J., Stromberg, S. G. L., & Greener, M. (1998). Sediment-transport competence of rain-impacted interrill overland flow. Earth Surface Processes and Landforms, 23, 365–375.
  • Potter, K. N., Velázquez-Garcia, J. J., & Torbert, H. A. (2002). Use of a submerged jet device to determine channel erodibility coefficients of selected soils of Mexico. Journal of Soil and Water Conservation, 57(5), 272–277.
  • Rapp, I. (1998). Effects of soil properties and experimental conditions on the rill erodibilities of selected soils ( Unpublished doctoral dissertation). University of Pretoria, South Africa.
  • Reichert, J. M., Norton, L. D., Favaretto, N., Huang, C., & Blume, E. (2009). Settling velocity, aggregate stability, and interrill erodibility of soils varying in clay mineralogy. Soil Science Society of America Journal, 73, 1369–1377. doi: 10.2136/sssaj2007.0067
  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture Handbook No. 703. Washington, DC: USDA.
  • Römkens, M. J. M., Prasad, S. N., & Gerits, J. J. P. (1997). Soil erosion modes of sealing soils: a phenomenological study. Soil Technology, 11, 31–41. doi: 10.1016/S0933-3630(96)00113-4
  • Römkens, M. J. M., Prasad, S. N., & Helming, K. (1997). Effect of negative soil water pressures on sediment concentration in runoff. In S. S. Y. Wang, E. H. Langendoen, & F. D. Shields (Eds.), Management of landscapes disturbed by channel incision (pp. 1002–1007). Oxford, MS: The University of Mississippi.
  • Saygin, S. D., Basaran, M., Ozcan, A. U., Dolarslan, M., Timur, O. B., Yilman, F. E., & Erpul, G. (2011). Land degradation assessment by geo-spatially modeling different soil erodibility equations in a semi-arid catchment. Environmental Monitoring and Assessment, 180(1–4), 201–215. doi: 10.1007/s10661-010-1782-z
  • Shainberg, I., Goldstein, D., & Levy, G. J. (1996). Rill erosion dependence on soil water content, aging, and temperature. Soil Science Society of America Journal, 60(3), 916–922. doi: 10.2136/sssaj1996.03615995006000030034x
  • Shainberg, I., Laflen, J. M., Bradford, J. M., & Norton, L. D. (1994). Hydraulic flow and water quality characteristics in rill erosion. Soil Science Society of America Journal, 58, 1007–1012. doi: 10.2136/sssaj1994.03615995005800040002x
  • Sheridan, G. J., So, H. B., Loch, R. J., & Walker, C. M. (2000). Estimation of erosion model erodibility parameters from media properties. Australian Journal of Soil Research, 38(2), 265–284. doi: 10.1071/SR99041
  • Tisdall, J. M., & Oades, J. M. (1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33, 141–163.
  • Torri, D., Sfalanga, M., & Del Sette, M. (1987). Splash detachment: Runoff depth and soil cohesion. Catena, 14, 149–155. doi: 10.1016/S0341-8162(87)80013-9
  • United Nations Convention to Combat Desertification (UNCCD). (1994). Elaboration of an international convention to combat desertification in countries experiencing serious drought and/or desertification, particularly in Africa. UN Doc. A/AC.241/27, 33 I.L.M. 1328.
  • United Nations Convention to Combat Desertification (UNCCD). (2011). Land and soil in the context of a green economy for sustainable development, food security and poverty eradication. Submission of the UNCCD secretariat to the preparatory process for the Rio + 20 Conference, 18 November 2011, Korea.
  • Van Klaveren, R. W., & McCool, D. K. (1998). Erodibility and critical shear of a previously frozen soil. Transactions of the ASAE, 41(5), 1315–1321. doi: 10.13031/2013.17304
  • Wall, D. H., Bardgett, R. D., Behan-Pelletier, V., Herrick, J. E., Jones, T. H., Ritz, K., … van der Putten, W. H. (2012). Soil ecology and ecosystem services. Oxford: Oxford University Press.
  • Wang, B., Zheng, F., Römkens, M. J. M., & Darboux, F. (2013). Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology, 187, 1–10. doi: 10.1016/j.geomorph.2013.01.018
  • Wischmeier, W. H., Johnson, C. B., & Cross, B. V. (1971). A soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26, 189–193.
  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses. A guide to erosion planning. Agriculture Handbook No. 537. Washington, DC: United States Department of Agriculture.
  • Wu, Q., Flanagan, D. C., Huang, C., & Wu, F. (2017). Estimation of USLE K-values with a process-based approach. Transactions of the ASABE, 60.
  • Yu, C. Y., Zhang, G. H., Geng, R., & Li, Z. W. (2014). Temporal variation in soil rill erodibility to concentrated flow detachment under four typical croplands in the Loess plateau of China. Journal of Soil and Water Conservation, 69(4), 352–363. doi: 10.2489/jswc.69.4.352

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.