363
Views
5
CrossRef citations to date
0
Altmetric
Research paper

Bottom slope influence on flow and bedload transfer through contractions

ORCID Icon, & ORCID Icon
Pages 197-210 | Received 07 Mar 2017, Accepted 13 Mar 2018, Published online: 11 Jun 2018

References

  • Armanini, A., Dellagiacoma, F., & Ferrari, L. (1991). From the check dam to the development of functional check dams. In A. Armanini & G. Di Silvio, (Eds.), Fluvial hydraulics of mountain regions (Vol. 37, pp. 331–344). Berlin, Heidelberg: Springer.
  • Armanini, A., & Larcher, M. (2001). Rational criterion for designing opening of slit-check dam. Journal of Hydraulic Engineering, 127(2), 94–104. doi: 10.1061/(ASCE)0733-9429(2001)127:2(94)
  • Barredo, J. I. (2007). Major flood disasters in Europe: 1950–2005. Natural Hazards, 42(1), 125–148. doi: 10.1007/s11069-006-9065-2
  • Becker, A., & Grünewald, U. (2003, May). Flood risk in central Europe. Science, 300(5622), 1099–1099. doi: 10.1126/science.1083624
  • Brandt, S. A. (2000). Classification of geomorphological effects downstream of dams. CATENA, 40, 375–401. doi: 10.1016/S0341-8162(00)00093-X
  • Camnasio, E., Erpicum, S., Orsi, E., Pirotton, M., Schleiss, A. J., & Dewals, B. (2013). Coupling between flow and sediment deposition in rectangular shallow reservoirs. Journal of Hydraulic Research, 51(5), 535–547. doi: 10.1080/00221686.2013.805311
  • Canelas, R., Murillo, J., & Ferreira, R. M. L. (2013). Two-dimensional depth-averaged modelling of dam-break flows over mobile beds. Journal of Hydraulic Research, 51(4), 392–407. doi: 10.1080/00221686.2013.798891
  • Canelas, R. B., Domínguez, J. M., Crespo, A. C., Silva, M., & Ferreira, R. M. L. (2015). Debris flow modelling with high-performance meshless methods. In Congresso de Métodos Numéricos em Engenharia (pp. 1–14). Lisbon.
  • Chiari, M., Friedl, K., & Rickenmann, D. (2010). A one-dimensional bedload transport model for steep slopes. Journal of Hydraulic Research, 48(2), 152–160. doi: 10.1080/00221681003704087
  • Chow, V. T.. (1959). Open-Channel Hydraulics. McGraw-Hill: Civil Engineering. Tokyo, Japan.
  • Church, M. (2013). Steep headwater channels. In J. F. Shroder & E. E. Wohl (Eds.), Treatise on geomorphology (Vol. 9, pp. 528–549). San Diego, CA: Academic Press.
  • Church, M., & Ferguson, R. I. (2015). Morphodynamics: Rivers beyond steady state. Water Resources Research, 51, 1883–1897. doi: 10.1002/2014WR016862
  • Di Stefano, C., & Ferro, V. (2013). Experimental Study of the Stage-Discharge Relationship for an Upstream Inclined Grid with Longitudinal Bars. Journal of Irrigation and Drainage Engineering, 139, 691–695. doi: 10.1061/(ASCE)IR.1943-4774.0000598
  • Di Stefano, C., & Ferro, V. (2014). Closure to “Experimental Study of the Stage-Discharge Relationship for an Upstream Inclined Grid with Longitudinal Bars”. Journal of Irrigation and Drainage Engineering, 07014028, 1.
  • Einstein, H. A. (1950). The Bed-Load Function for Sediment Transport in Open Channel Flows. Technical Bulletin of the USDA Soil Conservation Service, 1026, 71.
  • Ferguson, R. I. (2003). The missing dimension: Effects of lateral variation on 1-D calculations of fluvial bedload transport. Geomorphology, 56(1), 1–14. doi: 10.1016/S0169-555X(03)00042-4
  • Garegnani, G., Rosatti, G., & Bonaventura, L. (2013). On the range of validity of the Exner-based models for mobile-bed river flow simulations. Journal of Hydraulic Research, 51(4), 380–391. doi: 10.1080/00221686.2013.791647
  • Hager, W. H.. (2010). Wastewater hydraulics, theory and practice (2nd ed). Berlin, Heidelberg: Springer.
  • Hager, W. H., & Schleiss, A. J. (2009). Constructions hydrauliques [Hydraulic structures] (Vol. 15). Lausanne: Presses polytechniques et universitaires romandes.
  • Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49(3), 293–306. doi: 10.1080/00221686.2011.578914
  • Ji, U., Velleux, M., Julien, P. Y., & Hwang, M. (2014). Risk assessment of watershed erosion at Naesung Stream, South Korea. Environmental Management, 136, 16–26.
  • Khatsuria, R. M. (2005). Hydraulics of spillways and energy dissipators. In M. D. Meyer (Ed.), Civil and environmental engineering (pp. 41–62). New York, NY: Marcel Dekker.
  • Kindsvater, C. E., Carter, R. W., & Tracy, H. J. (1953). Computation of peak discharge at contractions. Geological Survey Circular, 284, 1–35. Retrieved from https://pubs.usgs.gov/circ/1953/0284/report.pdf.
  • Leys, E. (1976). Die technischen und wirtschaftlichen Grundlagen in der Wildbachverbauung der großdoligen und der kronenoffenen Bauweise [Technical and economical basics of hydraulic constructions in mountain rivers in terms of large openings and open crested architecture] (Unpublished doctoral dissertation). Universität für Bodenkultur, Vienna.
  • Luis, G., & Castillo, E. (2007). Prediction of total bed material discharge. Journal of Hydraulic Research, 45(3), 425–428. doi: 10.1080/00221686.2007.9521776
  • Mejean, S., Piton, G., & Recking, A. (2015). Caractérisation des conditions hydrauliques du piégeage de la charge sédimentaire grossière des torrents [Characterization of hydraulic conditions for the trapping of the coarse sediment load of torrents]. In Erosion torrentielle neige et avalanche Grenoble (p. 90). IRSTEA.
  • National Hydraulic Team (1961). Design charts for open-channel flow. U.S. Department of Transportation - Federal Highway Administration.
  • Norman, L. M., & Niraula, R. (2016). Model analysis of check dam impacts on long-term sediment and water budgets in Southeast Arizona, USA. Ecohydrology & Hydrobiology, 16(3), 125–137. doi: 10.1016/j.ecohyd.2015.12.001
  • Paola, C., & Seal, R. (1995). Grain size patchiness as a cause of selective deposition and downstream fining. Water Resources Research, 31(5), 1395–1407. doi: 10.1029/94WR02975
  • Peña González, E., Fe Marqués, J., Sánchez-Tembleque, F., Puertas, J., & Cea, L. (2008). Experimental validation of a sediment transport two-dimensional depth-averaged numerical model using PIV and 3D Scanning technologies. Journal of Hydraulic Research, 46(4), 489–503. doi: 10.3826/jhr.2008.2737
  • Piton, G., Carladous, S., Recking, A., Tacnet, J. M., Liébault, F., Kuss, D., …Marco, O. (2016). Why do we build check dams in Alpine streams? An historical perspective from the French experience. Earth Surface Processes and Landforms, 42, 91–108. doi: 10.1002/esp.3967
  • Piton, G., & Recking, A. (2016a). Design of sediment traps with open check dams. I: Hydraulic and deposition processes. Journal of Hydraulic Engineering, 142(2), 04015045.
  • Piton, G., & Recking, A. (2016b). Design of sediment traps with open check dams. II: Woody debris. Journal of Hydraulic Engineering, 142(2), 04015046.
  • Piton, G., & Recking, A. (2016c). Effects of check dams on bed-load transport and steep-slope stream morphodynamics. Geomorphology, in press, 05533-12. doi:10.1016/j.geomorph.2016.03.001.
  • Recking, A. (2013a). An analysis of nonlinearity effects on bed load transport prediction. Journal of Geophysical Research: Earth Surface, 118(3), 1264–1281.
  • Recking, A. (2013b). Simple method for calculating reach-averaged bed-load transport. Journal of Hydraulic Engineering, 139, 70–75. doi: 10.1061/(ASCE)HY.1943-7900.0000653
  • Rickenmann, D. (1991). Hyperconcentrated flow and sediment transport at steep slopes. Journal of Hydraulic Engineering, 117(11), 1419–1439. doi: 10.1061/(ASCE)0733-9429(1991)117:11(1419)
  • Savary, C., & Zech, Y. (2007). Boundary conditions in a two-layer geomorphological model. Application to a hydraulic jump over a mobile bed. Journal of Hydraulic Research, 45(3), 316–332. doi: 10.1080/00221686.2007.9521766
  • Schaefli, B., Maraun, D., & Holschneider, M. (2007). What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology. Advances in Water Resources, 30(12), 2511–2525. doi: 10.1016/j.advwatres.2007.06.004
  • Schleiss, A. J., Boes, R., Doering, M., Franca, M., Nadyeina, O., Pfister, M., …Werth, S. (2014). Geschiebe- und Habitatsdynamik - Forschungsprogramm Wasserbau und Ökologie [The research program Sediment and Habitat Dynamics]. Wasser Energie Luft, 106, 117–122.
  • Schwindt, S. (2017). Hydro-morphological processes through permeable sediment traps (Thesis No. 7655, Laboratory of Hydraulic Constructions (LCH), Ecole Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland). (Directors: A. J. Schleiss, & M. J. Franca).
  • Schwindt, S., De Cesare, G., Boillat, J. L., & Schleiss, A. J. (2016). Physical modelling optimization of a filter check dam in Switzerland. In G. Koboltschnig (Ed.), Proceedings of INTERPRAEVENT: Hazard and risk mitigation (Vol. 13, pp. 828–836). Lucerne: International Research Society Interpraevent.
  • Schwindt, S., Franca, M. J., & Schleiss, A. J. (2017). Effects of lateral and vertical constrictions on flow in rough steep channels with bedload. Journal of Hydraulic Engineering, 143, [accepted]:14 p. doi:10.1061/(ASCE)HY.1943-7900.0001389.
  • Silva, M., Costa, S., Canela, R. B., Pinheiro, A. N., & Cardoso, A. H. (2016). Experimental and numerical study of slit-check dams. International Journal of Sustainable Development and Planning, 11(2), 107–118. doi: 10.2495/SDP-V11-N2-107-118
  • Smart, G. M. (1984). Sediment transport formula for steep channels. Journal of Hydraulic Engineering, 110(3), 267–276. doi: 10.1061/(ASCE)0733-9429(1984)110:3(267)
  • Smart, G. M., & Jaeggi, M. N. R. (1983). Sedimenttransport in steilen Gerinnen [Sediment transport on steep slopes]. Zürich: Mitteilung Nr. 64 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der Eidgenössischen Technischen Hochschule Zürich.
  • Suda, J., Strauss, A., Rudolf-Miklau, F., & Hübl, J. (2009). Safety assessment of barrier structures. Structure and Infrastructure Engineering, 5(4), 311–324. doi: 10.1080/15732470701189498
  • Tacnet, J. M., & Degoutte, G. (2013). Principes de conception des ouvrages de protection contre les risques torrentiels [Design principles of torrential hazard mitigation structures] (pp. 267–331). QUAE.
  • Vischer, D. L. (2016). Natural hazards - a few striking historical events. In Proceedings of INTERPRAEVENT: Nature recognizes no catastrophes (Vol. 13, pp. 271–282). Lucerne: International Research Society Interpraevent.
  • Wang, Z., Lee, J. H. W., & Xu, M. (2013). Eco-hydraulics and eco-sedimentation studies in China. Journal of Hydraulic Research, 51(1), 19–32. doi: 10.1080/00221686.2012.753554
  • Yalin, M. S.. (1971). Theory of hydraulic models (Vol. 266). London: MacMillan.
  • Yang, S.-Q. (2005). Prediction of total bed material discharge. Journal of Hydraulic Research, 43(1), 12–22. doi: 10.1080/00221680509500107
  • Zollinger, F. (1983). Die Vorgänge in einem Geschiebeablagerungsplatz: Ihre Morphologie und ihre Möglichkeiten einer Steuerung [The processes in sediment traps: Their morphology and their possibilities of control] (No. 7419). Zürich: ETH Zürich. (Directors: H. Grubinger, & D. Vischer).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.