353
Views
2
CrossRef citations to date
0
Altmetric
Research papers

A circular cylinder in the main-channel/floodplain interface of a compound channel: effect of the shear flow on drag and lift

, ORCID Icon, &
Pages 420-433 | Received 29 Dec 2017, Accepted 25 Feb 2019, Published online: 11 Jun 2019

References

  • Bousmar, D., Rivière, N., Proust, S., Paquier, A., Morel, R., & Zech, Y. (2005). Upstream discharge distribution in compound-channel flumes. Journal of Hydraulic Engineering, 131(5), 408–412. doi: 10.1061/(ASCE)0733-9429(2005)131:5(408)
  • Braza, M., Perrin, R., & Hoarau, Y. (2006). Turbulence properties in the cylinder wake at high Reynolds numbers. Journal of Fluids and Structures, 22, 757–771. doi: 10.1016/j.jfluidstructs.2006.04.021
  • Brown, G. L., & Roshko, A. (2012). Turbulent shear layers and wakes. Journal of Turbulence, 13(51), 1–32.
  • Dupuis, V., Proust, S., Berni, C., & Paquier, A. (2017). Mixing layer development in compound channel flows with submerged and emergent rigid vegetation over the floodplains. Experiments in Fluids, 58(30), 1–18.
  • Fernandes, J. N. (2013). Compound channel uniform and non-uniform flows with and without vegetation in the floodplain (Doctoral dissertation). Instituto Superior Técnico, Lisbon.
  • Fernandes, J. N., Leal, J. B., & Cardoso, A. H. (2014). Improvement of the lateral distribution method based on the mixing layer theory. Advances in Water Resources, 69, 159–167. doi: 10.1016/j.advwatres.2014.04.003
  • Finn, R. K. (1953). Determination of the drag on a cylinder at low Reynolds numbers. Journal of Applied Physics, 24(6), 771–773. doi: 10.1063/1.1721373
  • Goring, D. G., & Nikora, V. I. (2002). Despiking acoustic doppler velocimeter data. Journal of Hydraulic Engineering, 128(1), 117–126. doi: 10.1061/(ASCE)0733-9429(2002)128:1(117)
  • Hinze, J. O. (1975). Turbulence. New York: McGraw-Hill.
  • Kappler, M., Rodi, W., Szepessy, S., & Badran, O. (2005). Experiments on the flow past long circular cylinders in a shear flow. Experiments in Fluids, 38(3), 269–284. doi: 10.1007/s00348-004-0872-5
  • Knight, D. W., & Shiono, K. (1990). Turbulence measurements in a shear layer region of a compound channel. Journal of Hydraulic Research, 28(2), 175–196. doi: 10.1080/00221689009499085
  • Kwon, T. S., Sung, H. J., & Hyun, J. M. (1992). Experimental investigation of uniform-shear flow past a circular cylinder. Journal of Fluids Engineering, 114, 457–460. doi: 10.1115/1.2910053
  • Lambert, M. F., & Myers, W. R. (1998). Estimating the discharge capacity in straight compound channels. Proceedings of the Institution of Civil Engineers - Water, Maritime and Energy, 130(2), 84–94. doi: 10.1680/iwtme.1998.30477
  • Lienhard, J. H. (1966). Synopsis of lift, drag and vortex frequency data for rigid circular cylinder. Washington: Washington State University.
  • Nezu, I., & Nakayama, T. (1997). Space–time correlation structures of horizontal coherent vortices in compound channel flows by using particle-tracking velocimetry. Journal of Hydraulic Research, 35(2), 191–208. doi: 10.1080/00221689709498426
  • Niemann, H. J., & Holscher, N. (1990). A review of recent experiments on the flow past circular-cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 33(1), 197–209. doi: 10.1016/0167-6105(90)90035-B
  • Norberg, C. (2003). Fluctuating lift on a circular cylinder: review and new measurements. Journal of Fluids and Structures, 17, 57–96. doi: 10.1016/S0889-9746(02)00099-3
  • Pasche, E., & Rouve, G. (1985). Overbank flow with vegetatively roughened flood plains. Journal of Hydraulic Engineering, 111(9), 1262–1278. doi: 10.1061/(ASCE)0733-9429(1985)111:9(1262)
  • Prinos, P., Townsend, R., & Tavoularis, S. (1985). Structure of turbulence in compound channel flows. Journal of Hydraulic Engineering, 111(9), 1246–1261. doi: 10.1061/(ASCE)0733-9429(1985)111:9(1246)
  • Proust, S., Fernandes, J. N., Leal, J. B., Rivière, N., & Peltier, Y. (2017). Mixing layer and coherent structures in compound channel flows: effects of transverse flow, velocity ratio and vertical confinement. Water resource Research, 53(4), 3387–3406. doi: 10.1002/2016WR019873
  • Proust, S., Fernandes, J. N., Peltier, Y., Leal, J. B., Rivière, N., & Cardoso, A. H. (2013). Turbulent non-uniform flows in straight compound open-channels. Journal of Hydraulic Research, 51(6), 656–667. doi: 10.1080/00221686.2013.818586
  • Ricardo, A. M., Koll, K., Franca, M. J., Schleiss, A. J., & Ferreira, R. M. L. (2014). The terms of turbulent kinetic energy budget within random arrays of emergent cylinder. Water Resource Research, 50, 4131–4148. doi: 10.1002/2013WR014596
  • Shiono, K., & Knight, D. W. (1991). Turbulent open channel flows with variable depth across the channel. Journal of Fluid Mechanics, 222, 617–646. doi: 10.1017/S0022112091001246
  • Sumner, D., & Akosile, O. O. (2003). On uniform planar shear flow around a circular cylinder at subcritical Reynolds number. Journal of Fluids and Structures, 18, 441–454. doi: 10.1016/j.jfluidstructs.2003.08.004
  • Tennekes, H., & Lumley, J. L. (1972). A first course in turbulence. Cambridge: Mass.: MIT Press.
  • Terrier, B. (2010). Flow Characteristics in Straight Compound Channels with Vegetation along the Main Channel (Doctoral dissertation). Loughborough University, London.
  • Tominaga, A., & Nezu, I. (1991). Turbulent structure in compound open-channel flows. Journal of Hydraulic Engineering, 117(1), 21–41. doi: 10.1061/(ASCE)0733-9429(1991)117:1(21)
  • Tritton, D. J. (1959). Experiments on the flow past a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics, 6(4), 547–567. doi: 10.1017/S0022112059000829
  • van Prooijen, B. C., Battjes, J. A., & Uijttewaal, W. S. J. (2005). Momentum exchange in straight uniform compound channel flow. Journal of Hydraulic Engineering, 131(3), 175–183. doi: 10.1061/(ASCE)0733-9429(2005)131:3(175)
  • von Kármán, T. (1911). Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erzeugt [On the mechanism of resistance experienced by a moving body in a fluid]. Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse, 1911, 509–517. Retrieved from https://eudml.org/doc/58812
  • von Kármán, T. (1912). Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erzeugt [On the mechanism of resistance experienced by a moving body in a fluid]. Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse, 1912, 547–556. Retrieved from https://eudml.org/doc/58837.
  • Wieselsberger, C. (1921). Neuere Feststellungen über die Gesetze des Flüssigkeits – und Luftwiderstands [Reprinted as NASA Technical Note N° 121 “Further information on the laws of fluid resistance”]. Phys. Z., 22, 321–328. Retrieved from https://archive.org/details/nasa_techdoc_19930080904/page/n1
  • Williamson, C. H. (1996). Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics, 28, 477–539. doi: 10.1146/annurev.fl.28.010196.002401
  • Woo, H. G. C., Peterka, J. A., & Cermak, J. E. (1989). Secondary flows and vortex formation around circular cylinder in constant shear flow. Journal of Fluid Mechanics, 204, 523–542. doi: 10.1017/S0022112089001862
  • Zdravkovich, M. M. (1997). Flow around circular cylinders. Oxford: Oxford University Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.