641
Views
19
CrossRef citations to date
0
Altmetric
Research papers

Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 553-565 | Received 20 Apr 2018, Accepted 27 May 2019, Published online: 12 Aug 2019

References

  • American Water Works Association (AWWA). (2001). Manual of Water Supply Practices - M51: Air-Release, Air-Vacuum, and Combination Air Valves. 1st. Denver, Colorado: AWWA.
  • Anderson, J. D. (1995). Computational fluid dynamics. New York: McGraw-Hill Book Co.
  • ANSYS FLUENT R19.0 academic [Computer software]. ANSYS, Canonsburg, PA. Retrieved from https://www.ansys.com/academic/free-student-products
  • Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., & Piccinni, A. F. (2016). Hydraulic transients caused by air expulsion during rapid filling of undulating pipelines. Water, 8(1), 25.
  • Benjamin, T. B. (1968). Gravity currents and related phenomena. Journal of Fluid Mechanics, 31(2), 209–248.
  • Besharat, M., Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Viseu, M. T., & Ramos, H. M. (2018). Backflow air and pressure analysis in emptying pipeline containing entrapped air pocket. Urban Water Journal, 15(8), 769–779.
  • Besharat, M., Tarinejad, R., Aalami, M. T., & Ramos, H. M. (2016). Study of a compressed air vessel for controlling the pressure surge in water networks: CFD and experimental analysis. Water Resources Management, 30(8), 2687–2702.
  • Besharat, M., Tarinejad, R., & Ramos, H. M. (2016). The effect of water hammer on a confined air pocket towards flow energy storage system. Journal of Water Supply Resources Technology-AQUA, 65(2), 116–126.
  • Besharat, M., Viseu, M. T., & Ramos, H. M. (2017). Experimental study of air vessel sizing to either store energy or protect the system in the water hammer occurrence. Water, 9(1), 63.
  • Collins, R. P., Boxall, J. B., Karney, B. W., Brunone, B., & Meniconi, S. (2012). How severe can transients be after a sudden depressurization? Journal of American Water Works Association, 104(4), E243–E251.
  • Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2017). Experimental and numerical analysis of a water emptying pipeline using different air valves. Water, 9(2), 1–15.
  • Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), 346–352.
  • Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Iglesias-Rey, P. L., & Martínez-Solano, F. J. (2018). Rigid water column model for simulating the emptying process in a pipeline using pressurized air. Journal of Hydraulic Engineering, 144(4), 06018004.
  • Ding, H., Visser, F. C., Jiang, Y., & Furmanczyk, M. (2011). Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications. Journal of Fluids Engineering, 133(1), 011101.
  • Fuertes-Miquel, V. S., Coronado-Hernández, O. E., Iglesias-Rey, P. L., & Mora-Melia, D. (2017). Transient phenomena during the emptying process of a single pipe with water-air interaction. Journal of Hydraulic Research, 57(3), 318–326.
  • Izquierdo, J., Fuertes, V. S., Cabrera, E., Iglesias, P., & García-Serra, J. (1999). Pipeline start-up with entrapped air. Journal of Hydraulic Research, 37(5), 579–590.
  • Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučkovič, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of large-scale pipeline by pressurized air. Journal of Hydraulic Engineering, 138(12), 1090–1100.
  • Liu, D. Y., & Zhou, L. (2009). Numerical simulation of transient flow in pressurized water pipeline with trapped air mass. Paper presented at the Asia-Pacific Power and Energy Engineering Conference, IEEE Power and Energy Society, New York, pp. 104–107.
  • Martinoia, T., Barreto, C. V., da Rocha, J. C. D. C., Lavoura, J., & Henriques, F. M. P. (2012). Simulation and planning of pipeline emptying operations. Paper presented at the Proceeding of the 9th International Pipeline Conference, ASME, IPC2012-90432, pp. 603–611.
  • Martins, N. M. C., Delgado, J. N., Ramos, H. M., & Covas, D. I. C. (2017). Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. Journal of Hydraulic Research, 55(4), 506–519.
  • Tijsseling, A., Hou, Q., Bozkus, Z., & Laanearu, J. (2016). Improved one-dimensional models for rapid emptying and filling of pipelines. Journal of Pressure Vessel Technology, 138(3), 031301.
  • Trindade, B. C., & Vasconcelos, J. G. (2013). Modeling of water pipeline filling events accounting for air phase interactions. Journal of Hydraulic Engineering, 139(9), 921–934.
  • Vasconcelos, J. G., & Wright, S. J. (2008). Rapid flow startup in filled horizontal pipelines. Journal of Hydraulic Engineering, 134(7), 984–992.
  • Wang, L., Wang, F., Karney, B., & Malekpour, A. (2017). Numerical investigation of rapid filling in bypass pipelines. Journal of Hydraulic Research, 55(5), 647–656.
  • Zhou, L., & Liu, D. (2013). Experimental investigation of entrapped air pocket in a partially full water pipe. Journal of Hydraulic Research, 51(4), 469–474.
  • Zhou, L., Liu, D., & Karney, B. (2013a). Phenomenon of white mist in pipelines rapidly filling with water with entrapped air pocket. Journal of Hydraulic Engineering, 139(10), 1041–1051.
  • Zhou, L., Liu, D., & Karney, B. (2013b). Investigation of hydraulic transients of two entrapped air pockets in a water pipeline. Journal of Hydraulic Engineering, 139(9), 949–959.
  • Zhou, L., Liu, D., Karney, B., & Zhang, Q. (2011). Influence of entrapped air pockets on hydraulic transients in water pipelines. Journal of Hydraulic Engineering, 137(12), 1686–1692.
  • Zhou, L., Liu, D., & Ou, C. (2011). Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127–140.
  • Zukoski, E. E. (1966). Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes. Journal of Fluid Mechanics, 25(4), 821–837.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.