2,397
Views
2
CrossRef citations to date
0
Altmetric
Research papers

Prediction of flow around a sharp-nosed bridge pier: influence of the Froude number and free-surface variation on the flow field

, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 582-593 | Received 03 Apr 2018, Accepted 28 May 2019, Published online: 08 Aug 2019

References

  • Baranya, S., Olsen, N. R. B., Stoesser, T., & Sturm, T. (2012). Three-dimensional RANS modeling of flow around circular piers using nested grids. Engineering Applications of Computational Fluid Mechanics, 6(4), 648–662. doi: 10.1080/19942060.2012.11015449
  • Baranya, S., Olsen, N. R. B., Stoesser, T., & Sturm, T. W. (2014). A nested grid based computational fluid dynamics model to predict bridge pier scour. Proceedings of the Institution of Civil Engineers: Water Management, 167(5), 259–268.
  • Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of computational physics, 100(2), 335–354. doi: 10.1016/0021-9991(92)90240-Y
  • Breusers, H. N. C., Nicollet, G., & Shen, H. W. (1977). Local scour around cylindrical piers. Journal of Hydraulic Research, 15(3), 211–252. doi: 10.1080/00221687709499645
  • Burkow, M., & Griebel, M. (2016). A full three dimensional numerical simulation of the sediment transport and the scouring at a rectangular obstacle. Computers & Fluids, 125, 1–10. doi: 10.1016/j.compfluid.2015.10.014
  • Chu, C.-R., Chung, C.-H., Wu, T.-R., & Wang, C.-Y. (2016). Numerical analysis of free surface flow over a submerged rectangular bridge deck. Journal of Hydraulic Engineering, 142(12), 04016060. doi: 10.1061/(ASCE)HY.1943-7900.0001177
  • Ebrahimi, M., Kahraman, R., Kripakaran, P., Djordjević, S., Tabor, G., Prodanović, D., & Riella, M. (2017). Scour and hydrodynamic effects of debris blockage at masonry bridges: Insights from experimental and numerical modelling. In Aminuddin Ab. Ghani (Ed.), 37th IAHR World Conference. Kuala Lumpur, Malaysia: IAHR.
  • Ebrahimi, M., Kripakaran, P., Prodanović, D., Kahraman, R., Riella, M., Tabor, G., & Djordjević, S. (2018). Experimental study on scour at a sharp-nose bridge pier with debris blockage. Journal of Hydraulic Engineering, 144(12), 04018071. doi: 10.1061/(ASCE)HY.1943-7900.0001516
  • Ferziger, J. H., & Peric, M. (1996). Computational methods for fluid dynamics. Berlin: Springer Berlin Heidelberg.
  • Graf, W. H., & Yulistiyanto, B. (1998). Experiments on flow around a cylinder; the velocity and vorticity fields. Journal of Hydraulic Research, 36(4), 637–654. doi: 10.1080/00221689809498613
  • Huang, W., Yang, Q., & Xiao, H. (2009). CFD modeling of scale effects on turbulence flow and scour around bridge piers. Computers & Fluids, 38(5), 1050–1058. doi: 10.1016/j.compfluid.2008.01.029
  • Issa, R. I. (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40–65. doi: 10.1016/0021-9991(86)90099-9
  • Kang, S., & Sotiropoulos, F. (2015). Large-eddy simulation of three-dimensional turbulent free surface flow past a complex stream restoration structure. Journal of Hydraulic Engineering, 141(10), 04015022. doi: 10.1061/(ASCE)HY.1943-7900.0001034
  • Kara, S., Kara, M. C., Stoesser, T., & Sturm, T. W. (2015). Free-surface versus rigid-lid les computations for bridge-abutment flow. Journal of Hydraulic Engineering, 141(9), 04015019. doi: 10.1061/(ASCE)HY.1943-7900.0001028
  • Khosronejad, A., Kang, S., & Sotiropoulos, F. (2012). Experimental and computational investigation of local scour around bridge piers. Advances in Water Resources, 37, 73–85. doi: 10.1016/j.advwatres.2011.09.013
  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. doi: 10.2514/3.12149
  • Moukalled, F., Mangani, L., & Darwish, M. (2015). The finite volume method in computational fluid dynamics: An advanced introduction with openfoam and matlab (1st ed.). Springer, Incorporated. doi: 10.1007/978-3-319-16874-6
  • Richardson, E. J., & Panchang, G. V. (1998). Three-Dimensional Simulation of Scour-Inducing Flow at Bridge Piers. Journal of Hydraulic Engineering, 124(5), 1–4. doi: 10.1061/(ASCE)0733-9429(1998)124:5(530)
  • Richardson, J. F., & Zaki, W. N. (1997). Sedimentation and fluidisation: Part I. Chemical Engineering Research and Design, 75(3), S82–S100. doi: 10.1016/S0263-8762(97)80006-8
  • Riella, M., Kahraman, R., & Tabor, G. R. (2018). Reynolds-averaged two-fluid model prediction of moderately dilute fluid-particle flow over a backward-facing step. International Journal of Multiphase Flow, 106, 95–108. doi: 10.1016/j.ijmultiphaseflow.2018.04.014
  • Riella, M., Kahraman, R., & Tabor, G. R. (2019). Inhomogeneity and anisotropy in Eulerian-Eulerian near-wall modelling. International Journal of Multiphase Flow, 114, 9–18. doi: 10.1016/j.ijmultiphaseflow.2019.01.014
  • Roulund, A., Sumer, B. M., Fredsoe, J., & Michelson, J. (2005). Numerical and experimental investigation of flow and scour around a circular pile. Journal of Fluid Mechanics, 534, 351–401. doi: 10.1017/S0022112005004507
  • Sajedeh, H. A., Farsadizadeh, D., Arvanagh, H., & Abbaspour, A. (2016). Numerical Simulation of Flow Pattern around the Bridge Pier with Submerged Vanes. Journal of Hydraulic Structures, 2(2), 46–61.
  • Versteeg, H. K., & Malalasekera, W. (1995). An introduction to computational fluid dynamics: The finite volume method. Harlow: Pearson Education Ltd.
  • Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620–631. doi: 10.1063/1.168744
  • Zalesak, S. T. (1979). Fully multidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics, 31(3), 335–362. doi: 10.1016/0021-9991(79)90051-2