433
Views
3
CrossRef citations to date
0
Altmetric
Research papers

Layer-averaged numerical study on effect of Reynolds number on turbidity currents

, , &
Pages 628-637 | Received 27 May 2018, Accepted 12 Jun 2019, Published online: 30 Oct 2019

References

  • Abd El-Gawad, S. M., Cantelli, A., Pirmez, C., Minisini, D., Sylvester, Z., & Imran, J. (2012). Three-dimensional numerical simulation of turbidity currents in a submarine channel on the seafloor of the Niger Delta slope. Journal of Geophysical Research: Oceans, 117(5), C05026.
  • An, S., Julien, P. Y., & Venayagamoorthy, S. K. (2012). Numerical simulation of particle-driven gravity currents. Environmental Fluid Mechanics, 12(6), 495–513. doi: 10.1007/s10652-012-9251-6
  • Anastasiou, K., & Chan, C. T. (1997). Solution of the 2d shallow water equations using the finite volume method on unstructured triangular meshes. International Journal for Numerical Methods in Fluids, 24(11), 1225–1245. doi: 10.1002/(SICI)1097-0363(19970615)24:11<1225::AID-FLD540>3.0.CO;2-D
  • Aureli, F., Maranzoni, A., Mignosa, P., & Ziveri, C. (2008). A weighted surface-depth gradient method for the numerical integration of the 2D shallow water equations with topography. Advances in Water Resources, 31(7), 962–974. doi: 10.1016/j.advwatres.2008.03.005
  • Blanchette, F., Strauss, M., Meiburg, E., Kneller, B., & Glinsky, M. E. (2005). High-resolution numerical simulations of resuspending gravity currents: conditions for self-sustainment. Journal of Geophysical Research: Oceans, 110(12), 483–505.
  • Bombardelli, F. A., Cantero, M. I., Garcia, M. H., & Buscaglia, G. C. (2009). Numerical aspects of the simulation of discontinuous saline underflows: The lock-exchange problem. Journal of Hydraulic Research, 47(6), 777–789. doi: 10.3826/jhr.2009.3238
  • Bonnecaze, R. T., Huppert, H. E., & Lister, J. R. (1995). Axisymmetric particle-driven gravity currents. Journal of Fluid Mechanics, 294, 93–121. doi: 10.1017/S0022112095002825
  • Bradford, S. F., & Katopodes, N. D. (1999). Hydrodynamics of turbid underflows. I: Formulation and numerical analysis. Journal of Hydraulic Engineering, 125(10), 1006–1015. doi: 10.1061/(ASCE)0733-9429(1999)125:10(1006)
  • Cantero, M. I., Balachandar, S., Garcia, M. H., & Bock, D. (2008). Turbulent structures in planar gravity currents and their influence on the flow dynamics. Journal of Geophysical Research: Oceans, 113(8), C08018.
  • Choi, S. U. (1998). Layer-averaged modeling of two-dimensional turbidity currents with a dissipative-Galerkin finite element method part i: Formulation and application example. Journal of Hydraulic Research, 36(3), 339–362. doi: 10.1080/00221689809498623
  • Choi, S. U., & Garcia, M. H. (2002). K-ε turbulence modeling of density currents developing two dimensionally on a slope. Journal of Hydraulic Engineering, 128(1), 55–63. doi: 10.1061/(ASCE)0733-9429(2002)128:1(55)
  • Dai, A. (2015). High-resolution simulations of downslope gravity currents in the acceleration phase. Physics of Fluids, 27(7), 076602. doi: 10.1063/1.4923208
  • de Luna, T. M., Diaz, M. J. C., Madronal, C. P., & Nieto, E. D. F. (2009). On a shallow water model for the simulation of turbidity currents. Communications in Computational Physics, 6(4), 848–882. doi: 10.4208/cicp.2009.v6.p848
  • Eidsvik, K. J., & Brors, B. (1989). Self-accelerated turbidity current prediction based upon k–ε model turbulence. Continental Shelf Research, 9(7), 617–627. doi: 10.1016/0278-4343(89)90033-2
  • Felix, M. (2001). A two-dimensional numerical model for a turbidity current. International Association of Sedimentologists, 31, 71–81.
  • Fukushima, Y., Parker, G., & Pantin, H. M. (1985). Prediction of ignitive turbidity currents in Scripps submarine canyon. Marine Geology, 67(1–2), 55–81. doi: 10.1016/0025-3227(85)90148-3
  • Gonzalez-Juez, E., Meiburg, E., & Constantinescu, G. (2009). The interaction of a gravity current with a circular cylinder mounted above a wall: effect of the gap size. Journal of Fluids and Structures, 25(4), 629–640. doi: 10.1016/j.jfluidstructs.2009.01.002
  • Guo, Y., Zhang, Z., & Shi, B. (2014). Numerical simulation of gravity current descending a slope into a linearly stratified environment. Journal of Hydraulic Engineering, 140(12), 04014061. doi: 10.1061/(ASCE)HY.1943-7900.0000936
  • Härtel, C., Meiburg, E., & Necker, F. (2000). Analysis and direct numerical simulation of the flow at a gravity-current head. part 1. Flow topology and front speed for slip and no-slip boundaries. Journal of Fluid Mechanics, 418, 189–212. doi: 10.1017/S0022112000001221
  • Hu, P., & Cao, Z. (2009). Fully coupled mathematical modeling of turbidity currents over erodible bed. Advances in Water Resources, 32(1), 1–15. doi: 10.1016/j.advwatres.2008.07.018
  • Hu, P., Cao, Z., & Pender, G. (2012). Well-balanced two-dimensional coupled modelling of submarine turbidity currents. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 165(4), 169–188. doi: 10.1680/ener.11.00038
  • Hu, P., Cao, Z., Pender, G., & Tan, G. (2012). Numerical modelling of turbidity currents in the Xiaolangdi reservoir, Yellow River, China. Journal of Hydrology, 464–465, 41–53. doi: 10.1016/j.jhydrol.2012.06.032
  • Hu, P., Pähtz, T., & He, Z. (2015). Is it appropriate to model turbidity currents with the three-equation model?. Journal of Geophysical Research: Earth Surface, 120(7), 1153–1170.
  • Huang, H., Imran, J., & Pirmez, C. (2008). Numerical study of turbidity currents with sudden-release and sustained-inflow mechanisms. Journal of Hydraulic Engineering, 134(9), 1199–1209. doi: 10.1061/(ASCE)0733-9429(2008)134:9(1199)
  • Imran, J., Kassem, A., & Khan, S. M. (2004). Three-dimensional modeling of density current. i. flow in straight confined and unconfined channels. Journal of Hydraulic Research, 42(6), 578–590. doi: 10.1080/00221686.2004.9628312
  • Imran, J., Parker, G., & Katopodes, N. (1998). A numerical model of channel inception on submarine fans. Journal of Geophysical Research: Oceans, 103(C1), 1219–1238. doi: 10.1029/97JC01721
  • Inghilesi, R., Adduce, C., Lombardi, V., Roman, F., & Armenio, V. (2018). Axisymmetric three-dimensional gravity currents generated by lock exchange. Journal of Fluid Mechanics, 851, 507–544. doi: 10.1017/jfm.2018.500
  • Kostic, S., & Parker, G. (2006). The response of turbidity currents to a canyon–fan transition: internal hydraulic jumps and depositional signatures. Journal of Hydraulic Research, 44(5), 631–653. doi: 10.1080/00221686.2006.9521713
  • Liu, X., Infante Sedano, J. A., & Mohammadian, A. (2017). Numerical modeling of submarine turbidity currents over erodible beds using unstructured grids. Ocean Modelling, 113, 157–170. doi: 10.1016/j.ocemod.2017.03.015
  • Lombardi, V., Adduce, C., & La Rocca, M. (2018). Unconfined lock-exchange gravity currents with variable lock width: laboratory experiments and shallow-water simulations. Journal of Hydraulic Research, 56(3), 399–411. doi: 10.1080/00221686.2017.1372817
  • Meiburg, E., & Kneller, B. (2010). Turbidity currents and their deposits. Annual Review of Fluid Mechanics, 42(1), 135–156. doi: 10.1146/annurev-fluid-121108-145618
  • Meiburg, E., Radhakrishnan, S., & Nasr-Azadani, M. (2015). Modeling gravity and turbidity currents: computational approaches and challenges. Applied Mechanics Reviews, 67(4), 040802. doi: 10.1115/1.4031040
  • Nasr-Azadani, M. M., & Meiburg, E. (2014a). Influence of seafloor topography on the depositional behavior of bi-disperse turbidity currents: A three-dimensional, depth-resolved numerical investigation. Environmental Fluid Mechanics, 14(2), 319–342. doi: 10.1007/s10652-013-9292-5
  • Nasr-Azadani, M. M., & Meiburg, E. (2014b). Turbidity currents interacting with three-dimensional seafloor topography. Journal of Fluid Mechanics, 745(2), 409–443. doi: 10.1017/jfm.2014.47
  • Necker, F., Härtel, C., Kleiser, L., & Meiburg, E. (2002). High-resolution simulations of particle-driven gravity currents. International Journal of Multiphase Flow, 28(2), 279–300. doi: 10.1016/S0301-9322(01)00065-9
  • Necker, F., Härtel, C., Kleiser, L., & Meiburg, E. (2005). Mixing and dissipation in particle-driven gravity currents. Journal of Fluid Mechanics, 545, 339–372. doi: 10.1017/S0022112005006932
  • Nogueira, H. I. S., Adduce, C., Alves, E., & Franca, M. J. (2014). Dynamics of the head of gravity currents. Environmental Fluid Mechanics, 14(2), 519–540. doi: 10.1007/s10652-013-9315-2
  • Ooi, S. K., Constantinescu, G., & Weber, L. (2009). Numerical simulations of lock-exchange compositional gravity current. Journal of Fluid Mechanics, 635, 361–388. doi: 10.1017/S0022112009007599
  • Ottolenghi, L., Adduce, C., Inghilesi, R., Armenio, V., & Roman, F. (2016a). Entrainment and mixing in unsteady gravity currents. Journal of Hydraulic Research, 54(5), 541–557. doi: 10.1080/00221686.2016.1174961
  • Ottolenghi, L., Adduce, C., Inghilesi, R., Roman, F., & Armenio, V. (2016b). Mixing in lock-release gravity currents propagating up a slope. Physics of Fluids, 28(5), 056604. doi: 10.1063/1.4948760
  • Ottolenghi, L., Adduce, C., Roman, F., & Armenio, V. (2017). Analysis of the flow in gravity currents propagating up a slope. Ocean Modelling, 115, 1–13. doi: 10.1016/j.ocemod.2017.05.001
  • Ottolenghi, L., Prestininzi, P., Montessori, A., Adduce, C., & La Rocca, M. (2018). Lattice Boltzmann simulations of gravity currents. European Journal of Mechanics, B/Fluids, 67, 125–136. doi: 10.1016/j.euromechflu.2017.09.003
  • Parker, G., Fukushima, Y., & Pantin, H. M. (1986). Self-accelerating turbidity currents. Journal of Fluid Mechanics, 171, 145–181. doi: 10.1017/S0022112086001404
  • Parker, G., Garcia, M., Fukushima, Y., & Yu, W. (1987). Experiments on turbidity currents over an erodible bed. Journal of Hydraulic Research, 25(1), 123–147. doi: 10.1080/00221688709499292
  • Piomelli, U. (1999). Large-eddy simulation: achievements and challenges. Progress in Aerospace Sciences, 35(4), 335–362. doi: 10.1016/S0376-0421(98)00014-1
  • Qian, N., & Wan, Z. (1983). Mechanics of sediment transport. Beijing, China: Science Press.
  • Simpson, J. E. (1997). Gravity currents: In the environment and the laboratory. Cambridge, UK: Cambridge University Press.
  • Stacey, M. W., & Bowen, A. J. (1988). The vertical structure of turbidity currents and a necessary condition for self-maintenance. Journal of Geophysical Research, 93(C4), 3543–3553. doi: 10.1029/JC093iC04p03543
  • Strauss, M., & Glinsky, M. E. (2012). Turbidity current flow over an erodible obstacle and phases of sediment wave generation. Journal of Geophysical Research: Oceans, 117(6), C06007.
  • Tokyay, T., Constantinescu, G., & Meiburg, E. (2011). Lock-exchange gravity currents with a high volume of release propagating over a periodic array of obstacles. Journal of Fluid Mechanics, 672(5), 570–605. doi: 10.1017/S0022112010006312
  • Toniolo, H. (2009). Numerical simulation of sedimentation processes in reservoirs as a function of outlet location. International Journal of Sediment Research, 24(3), 339–351. doi: 10.1016/S1001-6279(10)60008-X
  • Wilson, R. I., Friedrich, H., & Stevens, C. (2017). Turbulent entrainment in sediment-laden flows interacting with an obstacle. Physics of Fluids, 29(3), 036603. doi: 10.1063/1.4979067
  • Zeng, J., & Lowe, D. R. (1997). Numerical simulation of turbidity current flow and sedimentation: I. Theory. Sedimentology, 44(1), 67–84. doi: 10.1111/j.1365-3091.1997.tb00424.x
  • Zhang, R., & Xie, J. (1993). Sedimentation Research in China systematic selections. Beijing: China Water and Power Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.