461
Views
2
CrossRef citations to date
0
Altmetric
Research papers

Comparison between hydrostatic and total pressure simulations of dam-break flows

ORCID Icon, ORCID Icon & ORCID Icon
Pages 725-737 | Received 17 Jun 2018, Accepted 16 Sep 2019, Published online: 06 Nov 2019

References

  • Aureli, F., Maranzoni, A., Mignosa, P., & Ziveri, C. (2008). Dam-break flows: Acquisition of experimental data through an imaging technique and 2d numerical modeling. Journal of Hydraulic Engineering, 134(8), 1089–1101. doi: 10.1061/(ASCE)0733-9429(2008)134:8(1089)
  • Biscarini, C., Di Francesco, S., & Manciola, P. (2010). Cfd modelling approach for dam break flow studies. Hydrology and Earth System Sciences, 14(4), 705–718. doi: 10.5194/hess-14-705-2010
  • Brunner, G. W. (2016). HEC-RAS river analysis system user's manual (Version 5.0). Davis, CA: U.S. Army Corps of Engineers. 960 p.
  • Butt, M. J., Umar, M., & Qamar, R. (2013). Landslide dam and subsequent dam-break flood estimation using hec-ras model in northern pakistan. Natural Hazards, 65(1), 241–254. doi: 10.1007/s11069-012-0361-8
  • Chorin, A. J. (1968). Numerical solution of the navier-stokes equations. Mathematics of Computation, 22(104), 745–762. doi: 10.1090/S0025-5718-1968-0242392-2
  • Delestre, O., Cordier, S., Darboux, F., Du, M., James, F., Laguerre, C., … Planchon, O. (2014). Fullswof: A software for overland flow simulation. In P. Gourbesville, J. Cunge, & G. Caignaert (Eds.), Advances in hydroinformatics (pp. 221–231). Springer Hydrogeology. Singapore: Springer.
  • Fedkiw, R. P., Aslam, T., Merriman, B., & Osher, S. (1999). A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics, 152(2), 457–492. doi: 10.1006/jcph.1999.6236
  • Fujita, M., Koike, O., & Yamaguchi, Y. (2015). Direct simulation of drying colloidal suspension on substrate using immersed free surface model. Journal of Computational Physics, 281, 421–448. doi: 10.1016/j.jcp.2014.10.042
  • Gottlieb, S., & Shu, C. W. (1998). Total variation diminishing runge-kutta schemes. Mathematics of Computation of the American Mathematical Society, 67(221), 73–85. doi: 10.1090/S0025-5718-98-00913-2
  • Jahanbakhsh, E., Panahi, R., & Seif, M. (2007). Numerical simulation of three-dimensional interfacial flows. International Journal of Numerical Methods for Heat & Fluid Flow, 17(4), 384–404. doi: 10.1108/09615530710739167
  • Jung, C. G., & Kim, S. J. (2017). Comparison of the damaged area caused by an agricultural dam-break flood wave using hec-ras and uav surveying. Agricultural Sciences, 8(10), 1089–1104. doi: 10.4236/as.2017.810079
  • Kang, S., & Sotiropoulos, F. (2012). Numerical modeling of 3d turbulent free surface flow in natural waterways. Advances in Water Resources, 40, 23–36. doi: 10.1016/j.advwatres.2012.01.012
  • Kleefsman, K., Fekken, G., Veldman, A., Iwanowski, B., & Buchner, B. (2005). A volume-of-fluid based simulation method for wave impact problems. Journal of Computational Physics, 206(1), 363–393. doi: 10.1016/j.jcp.2004.12.007
  • Lervåg, K. Y., Müller, B., & Munkejord, S. T. (2013). Calculation of the interface curvature and normal vector with the level-set method. Computers & Fluids, 84, 218–230. doi: 10.1016/j.compfluid.2013.06.004
  • Li, P. W., & Fan, C. M. (2017). Generalized finite difference method for two-dimensional shallow water equations. Engineering Analysis with Boundary Elements, 80, 58–71. doi: 10.1016/j.enganabound.2017.03.012
  • Liang, D. (2010). Evaluating shallow water assumptions in dam-break flows. Proceedings of the institution of civil engineers-water management, London (Vol. 163, pp. 227–237).
  • Lilly, D. K. (1967). The representation of small scale turbulence in numerical simulation experiments. Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, Yorktown Heights, USA, pp. 195–210.
  • Liu, X. D., Osher, S., & Chan, T. (1994). Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 115(1), 200–212. doi: 10.1006/jcph.1994.1187
  • Martin, J., & Moyce, W. (1952). Part V. An experimental study of the collapse of fluid columns on a rigid horizontal plane, in a medium of lower, but comparable, density. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 244(882), 325–334. doi: 10.1098/rsta.1952.0007
  • Mungkasi, S., & Roberts, S. (2013). Validation of anuga hydraulic model using exact solutions to shallow water wave problems. Journal of Physics: Conference Series, 423, 012029.
  • Osher, S., & Sethian, J. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. Journal of Computational Physics, 79, 12–49. doi: 10.1016/0021-9991(88)90002-2
  • Özdemir, H., Neal, J., Bates, P., & Döker, F. (2013). 1-d and 2-d urban dam-break flood modeling in Istanbul, Turkey. Geophysical Research Abstracts, 16, 218.
  • Raes, D., & Deproost, P. (2003). Model to assess water movement from a shallow water table to the root zone. Agricultural Water Management, 62(2), 79–91. doi: 10.1016/S0378-3774(03)00094-5
  • Rengers, F., McGuire, L., Kean, J. W., Staley, D. M., & Hobley, D. (2016). Model simulations of flood and debris flow timing in steep catchments after wildfire. Water Resources Research, 52(8), 6041–6061. doi: 10.1002/2015WR018176
  • Rezende, R. V., Almeida, R. A., de Souza, A. A. U., & Souza, S. M. G. U. (2015). A two-fluid model with a tensor closure model approach for free surface flow simulations. Chemical Engineering Science, 122, 596–613. doi: 10.1016/j.ces.2014.07.064
  • Salman, H., Kuznetsov, L., Jones, C., & Ide, K. (2006). A method for assimilating lagrangian data into a shallow-water-equation ocean model. Monthly Weather Review, 134(4), 1081–1101. doi: 10.1175/MWR3104.1
  • Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain. Carnegie-Mellon University, Department of Computer Science.
  • Singh, J., Altinakar, M. S., & Ding, Y. (2011). Two-dimensional numerical modeling of dam-break flows over natural terrain using a central explicit scheme. Advances in Water Resources, 34(10), 1366–1375. doi: 10.1016/j.advwatres.2011.07.007
  • Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91(3), 99–164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  • Son, G. (2001). A numerical method for bubble motion with phase change. Numerical Heat Transfer: Part B: Fundamentals, 39(5), 509–523. doi: 10.1080/104077901750188868
  • Stansby, P., Chegini, A., & Barnes, T. (1998). The initial stages of dam-break flow. Journal of Fluid Mechanics, 370, 203–220.
  • Steinberg, S., & Roache, P. J. (1985). Symbolic manipulation and computational fluid dynamics. Journal of Computational Physics, 57(2), 251–284. doi: 10.1016/0021-9991(85)90045-2
  • Stoker, J. J. (1957). Water waves: The mathematical theory with applications. New York: Interscience Publishers, Inc.
  • Sussman, M., Fatemi, E., Smereka, P., & Osher, S. (1998). An improved level set method for incompressible two-phase flows. Computers & Fluids, 27, 663–680. doi: 10.1016/S0045-7930(97)00053-4
  • Sussman, M., Smereka, P., & Osher, S. (1994). A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 114, 146–159. doi: 10.1006/jcph.1994.1155
  • Tanguy, S., Ménard, T., & Berlemont, A. (2007). A level set method for vaporizing two-phase flows. Journal of Computational Physics, 221(2), 837–853. doi: 10.1016/j.jcp.2006.07.003
  • Van Der Knijff, J. M., Younis, J., & De Roo, A. P. J. (2010). Lisflood: A GIS-based distributed model for river basin scale water balance and flood simulation. International Journal of Geographical Information Science, 24(2), 189–212. doi: 10.1080/13658810802549154
  • Vanzo, D., Siviglia, A., & Toro, E. F. (2016). Pollutant transport by shallow water equations on unstructured meshes: Hyperbolization of the model and numerical solution via a novel flux splitting scheme. Journal of Computational Physics, 321, 1–20. doi: 10.1016/j.jcp.2016.05.023
  • Wang, S. S., Roache, P. J., Jia, Y., Schmalz, R. A., & Smith, P. E. (2009). Verification and validation of 3d free-surface flow models. Reston, VA: ASCE.
  • Watanabe, Y., & Mori, N. (2013). Fundamental computational methods. In H. Gotoh, A. Okayasu, & Y. Watanabe (Eds.), Computational wave dynamics (pp. 45–73). World Scientific Publishing Co., Inc.
  • Xiong, Y. (2011). A dam break analysis using hec-ras. Journal of Water Resource and Protection, 3(6), 370–379. doi: 10.4236/jwarp.2011.36047
  • Yoon, H. S., Jeon, C. H., Jung, J. H., Koo, B., Choi, C., & Shin, S. C. (2013). Simulation of two-phase flow-body interaction problems using direct forcing/fictitious domain-level set method. International Journal for Numerical Methods in Fluids, 73(3), 250–265. doi: 10.1002/fld.3797
  • Yue, W., Lin, C. L., & Patel, V. C. (2003). Numerical simulation of unsteady multidimensional free surface motions by level set method. International Journal for Numerical Methods in Fluids, 42(8), 853–884. doi: 10.1002/fld.555
  • Zaspel, P., & Griebel, M. (2013). Solving incompressible two-phase flows on multi-gpu clusters. Computers & Fluids, 80, 356–364. doi: 10.1016/j.compfluid.2012.01.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.