507
Views
14
CrossRef citations to date
0
Altmetric
Research papers

An experimental study of air–water flows in hydraulic jumps on flat slopes

ORCID Icon & ORCID Icon
Pages 767-777 | Received 18 Jul 2018, Accepted 16 Sep 2019, Published online: 05 Dec 2019

References

  • Bakhmeteff, B. A. (1932). The hydraulic jump and related phenomena. Transactions ASME, 54(APM 54-1), 1–12.
  • Bakhmeteff, B. A., & Matzke, A. E. (1938). The hydraulic jump in sloped channels. Transactions ASME, 60(HYD-60-1), 111–118.
  • Beirami, M. K., & Chamani, M. R. (2010). Hydraulic jumps on sloping channels: Roller length and energy loss. Canadian Journal of Civil Engineering, 37(4), 535–543. doi: 10.1139/L09-175
  • Bélanger, J. B. (1841). Notes sur l’Hydraulique [Notes on hydraulic engineering]. Ecole Royale des Ponts et Chaussées, (1841), 223. In French.
  • Bradley, J. N., & Peterka, A. J. (1957). Hydraulic design of stilling basins: Stilling basin with sloping apron (Basin V). Journal of the Hydraulics Division, 83(HY5), 1–32. Paper 1405.
  • Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896–909. doi: 10.1016/j.expthermflusci.2011.01.009
  • Chanson, H. (1995). Air entrainment in two-dimensional turbulent shear flows with partially developed inflow conditions. International Journal of Multiphase Flow, 21(6), 1107–1121. doi: 10.1016/0301-9322(95)00048-3
  • Chanson, H. (2007). Bubbly flow structure in hydraulic jump. European Journal of Mechanics - B/Fluids, 26, 367–384. doi: 10.1016/j.euromechflu.2006.08.001
  • Chanson, H., & Brattberg, T. (2000). Experimental study of the air-water shear flow in a hydraulic jump. International Journal of Multiphase Flow, 26(4), 583–607. doi: 10.1016/S0301-9322(99)00016-6
  • Felder, S. (2018). StefanFelder/Air-water-flow-data-analysis-software-for-double-tip-phase-detection-intrusive-probes (Version v1.0). Zenodo. doi: 10.5281/zenodo.2448251
  • Felder, S., & Chanson, H. (2015). Phase-detection probe measurements in high-velocity free-surface flows including a discussion of key sampling parameters. Experimental Thermal and Fluid Science, 61, 66–78. doi: 10.1016/j.expthermflusci.2014.10.009
  • Felder, S., & Chanson, H. (2017). Scale effects in microscopic air-water flow properties in high-velocity free-surface flows. Experimental Thermal and Fluid Science, 83, 19–36. doi: 10.1016/j.expthermflusci.2016.12.009
  • Felder, S., & Chanson, H. (2018). Air-water flow patterns of hydraulic jumps on uniform beds macroroughness. Journal of Hydraulic Engineering, 144(3), 04017068. doi: 10.1061/(ASCE)HY.1943-7900.0001402
  • Felder, S., Hohermuth, B., & Boes, R. M. (2019). High-velocity air-water flows downstream of sluice gates including selection of optimum phase-detection probe. International Journal of Multiphase Flow, 116, 203–220. doi: 10.1016/j.ijmultiphaseflow.2019.04.015
  • Felder, S., & Pfister, M. (2017). Comparative analyses of phase-detective intrusive probes in high-velocity air-water flows. International Journal of Multiphase Flow, 90, 88–101. doi: 10.1016/j.ijmultiphaseflow.2016.12.009
  • Felder, S., & Severi, A. (2016, December 5–8). Entrapped air in high-velocity free-surface flows on a flat-sloped spillway. Proceedings of 20th Australasian Fluid Mechanics Conference, Perth, WA.
  • Gualteri, C., & Chanson, H. (2010). Effect of Froude number on bubble clustering in a hydraulic jump. Journal of Hydraulic Research, 48(4), 504–508. doi: 10.1080/00221686.2010.491688
  • Gunal, M., & Narayanan, R. (1996). Hydraulic jump in sloping channels. Journal of Hydraulic Engineering, 122(8), 436–442. doi: 10.1061/(ASCE)0733-9429(1996)122:8(436)
  • Hager, W. H. (1988). B-jump in sloping channel. Journal of Hydraulic Research, 26(5), 539–558. doi: 10.1080/00221688809499192
  • Hager, W. H. (1993). Classical hydraulic jump: Free surface profile. Canadian Journal of Civil Engineering, 20(3), 536–539. doi: 10.1139/l93-068
  • Hager, W. H., & Bremen, R. (1989). Classical hydraulic jumps: Sequent depths. Journal of Hydraulic Research, 27, 565–585. doi: 10.1080/00221688909499111
  • Hager, W. H., Bremen, R., & Kawagoshi, N. (1990). Classical hydraulic jump: Length of the roller. Journal of Hydraulic Research, 28(5), 591–608. doi: 10.1080/00221689009499048
  • Hager, W. H., & Damei, L. (1992). Sill-controlled energy dissipator. Journal of Hydraulic Research, 30(2), 165–181. doi: 10.1080/00221689209498932
  • Kawagoshi, N., & Hager, W. H. (1990). B-jump in sloping channel, II. Journal of Hydraulic Research, 28(4), 461–480. doi: 10.1080/00221689009499060
  • Kindsvater, C. E. (1944). The hydraulic jump in sloping channels. Transactions ASCE, 108(109), 1107–1154.
  • Long, D., Rajaratnam, N., Steffler, P. M., & Smy, P. R. (1991). Structure of flow in hydraulic jumps. Journal of Hydraulic Research, 29(2), 207–218. doi: 10.1080/00221689109499004
  • Mok, K. M. (2004). Relation of surface roller eddy formation and surface fluctuation in hydraulic jumps. Journal of Hydraulic Research, 42(2), 207–212. doi: 10.1080/00221686.2004.9728383
  • Montano, L., & Felder, S. (2017, August 13–18). Air-water flow properties in hydraulic jumps on a positive slope. Proceedings of 37th IAHR world congress, Kuala Lumpur.
  • Montano, L., & Felder, S. (2018, December 10–13). Effect of inflow conditions on the air-water flow properties in hydraulic jumps. Proceedings of 21st Australasian fluid mechanics conference, Adelaide.
  • Montano, L., Li, R., & Felder, S. (2018). Continuous measurement of time-varying free-surface profiles in aerated hydraulic jumps with a LIDAR. Experimental Thermal and Fluid Science, 93, 379–397. doi: 10.1016/j.expthermflusci.2018.01.016
  • Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541–558. doi: 10.1080/00221686.1999.9628267
  • Murzyn, F., & Chanson, H. (2009). Free-surface fluctuations in hydraulic jumps: Experimental observations. Experimental Thermal and Fluid Science, 33(7), 1055–1064. doi: 10.1016/j.expthermflusci.2009.06.003
  • Murzyn, F., Mouaze, D., & Chaplin, J. R. (2005). Optical fibre probe measurements of bubbly flow in hydraulic jumps. International Journal of Multiphase Flow, 31, 141–154. doi: 10.1016/j.ijmultiphaseflow.2004.09.004
  • Ohtsu, I., & Yasuda, Y. (1991). Hydraulic jump in sloping channels. Journal of Hydraulic Engineering, 117(7), 905–921. doi: 10.1061/(ASCE)0733-9429(1991)117:7(905)
  • Pagliara, S., & Palermo, M. (2015). Hydraulic jumps on rough and smooth beds: Aggregate approach for horizontal and adverse-sloped beds. Journal of Hydraulic Research, 53(2), 243–252. doi: 10.1080/00221686.2015.1017778
  • Palermo, M., & Pagliara, S. (2018). Semi-theoretical approach for energy dissipation estimation at hydraulic jumps on rough sloped channels. Journal of Hydraulic Research, 56(6), 786–795. doi: 10.1080/00221686.2017.1419991
  • Rajaratnam, N. (1965). The hydraulic jump as a wall jet. Journal of Hydraulic Division, 91(5), 107–132.
  • Rajaratnam, N. (1966). The hydraulic jump in sloping channels. Irrigation and Power, 23(2), 137–149.
  • Rajaratnam, N. (1967). Hydraulic Jumps. Advances in Hydroscience, 4, 197–280. doi: 10.1016/B978-1-4831-9935-1.50011-2
  • Rajaratnam, N., & Murahari, V. (1974). Flow characteristics of sloping channel jumps. Journal of Hydraulics Division, 100(6), 731–740.
  • Resch, F. J., & Leutheusser, H. J. (1972). Le ressaut hydraulique: mesures de turbulence dans la région diphasique. La Houille Blanche, 4, 279–293. (In French). doi: 10.1051/lhb/1972021
  • Takahashi, M., & Ohtsu, I. (2017). Effects of inflows on air entrainment in hydraulic jumps below a gate. Journal of Hydraulic Research, 55(2), 259–268. doi: 10.1080/00221686.2016.1238016
  • Wang, H. (2014). Turbulence and air entrainment in hydraulic jumps (Ph.D. thesis). The University of Queensland.
  • Wang, H., & Chanson, H. (2015). Experimental study of turbulent fluctuations in hydraulic jumps. Journal of Hydraulic Engineering, 141(7), 04015010. doi: 10.1061/(ASCE)HY.1943-7900.0001010
  • Wang, H., Felder, S., & Chanson, H. (2014). An experimental study of turbulent two-phase flow in hydraulic jumps and application of a triple decomposition technique. Experiments in Fluids, 55, 1–18.
  • Wu, S., & Rajaratnam, N. (1995). Free jumps, submerged jumps and wall jets. Journal of Hydraulic Research, 33(2), 197–212. doi: 10.1080/00221689509498670
  • Zhang, G., Wang, H., & Chanson, H. (2013). Turbulence and aeration in hydraulic jumps: Free-surface fluctuations and integral turbulent scale measurements. Environmental Fluid Mechanics, 13(2), 189–204. doi: 10.1007/s10652-012-9254-3
  • Zhang, W., Liu, M., Zhu, D. Z., & Rajaratnam, N. (2014). Mean and turbulent bubble velocities in free hydraulic jumps for small to intermediate Froude numbers. Journal of Hydraulic Engineering, 140(11), 1–9. doi: 10.1061/(ASCE)HY.1943-7900.0000924

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.