444
Views
5
CrossRef citations to date
0
Altmetric
Research papers

A new 1D coupled hydrodynamic discrete element model for floating debris in violent shallow flows

, , , &
Pages 778-789 | Received 01 Oct 2018, Accepted 16 Sep 2019, Published online: 05 Dec 2019

References

  • Albano, R., Sole, A., Mirauda, D., & Adamowski, J. (2016). Modelling large floating bodies in urban area flash-floods via a Smoothed Particle Hydrodynamics model. Journal of Hydrology, 541, 344–358. doi: 10.1016/j.jhydrol.2016.02.009
  • Amicarelli, A., Albano, R., Mirauda, D., Agate, G., Sole, A., & Guandalini, R. (2015). A smoothed particle hydrodynamics model for 3D solid body transport in free surface flows. Computers & Fluids, 116, 205–228. doi: 10.1016/j.compfluid.2015.04.018
  • Auvil, K. W. (1990). Perspective drawing. California: Mayfield Publishing Company.
  • Batchelor, G. K. (2000). An introduction to fluid dynamics. Cambridge: Cambridge University Press.
  • Canelas, R., Crespo, A. A. J. C., Domínguez, J. M., Gómez-Gesteira, M., & Rui, M. L. F. (2017). Resolved simulation of a granular-fluid flow with a coupled SPH-DCDEM model. Journal of Hydraulic Engineering, 143(9), 06017012. doi: 10.1061/(ASCE)HY.1943-7900.0001331
  • Canelas, R., Ferreira, R. M., Crespo, A. J., & Domínguez, J. (2013). A generalized SPH-DEM discretization for the modelling of complex multiphasic free surface flows. Proceedings of the 8th International SPHERIC Workshop.
  • Canelas, R. B., Domínguez, J. M., Crespo, A. J. C., Gómez-Gesteira, M., & Ferreira, R. M. L. (2015). A smooth particle hydrodynamics discretization for the modelling of free surface flows and rigid body dynamics. International Journal for Numerical Methods in Fluids, 78(9), 581–593. doi: 10.1002/fld.4031
  • Chen, F., Drumm, E. C., & Guiochon, G. (2011). Coupled discrete element and finite volume solution of two classical soil mechanics problems. Computers and Geotechnics, 38(5), 638–647. doi: 10.1016/j.compgeo.2011.03.009
  • Chen, K., Liang, Q., Xiong, Y., Qiang, J., Wang, G., & Zheng, J. (2016). Laboratory and numerical investigation of extreme flow impact on simplified sea-crossing bridge structures. The 26th International Ocean and Polar Engineering Conference.
  • Chow, V. T. (1959). Open channel hydraulics. West Caldwell: The Blackburn Press.
  • Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. doi: 10.1680/geot.1979.29.1.47
  • Daly, S. F., & Hopkins, M. A. (2001). Estimating forces on an ice control structure using DEM. Proceedings, 11th Workshop on River Ice. River ice processes within a changing environment.
  • Ferrer-Boix, C., & Liang, Q. (2016). A numerical approach for analysing the performance of a sewage screening chamber. Urban Water Journal, 13(4), 360–371. doi: 10.1080/1573062X.2014.993991
  • Genevaux, O. (2003). Simulating fluid-solid interaction. In Graphics interface (pp. 31–38).
  • Goniva, C., Kloss, C., Hager, A., & Pirker, S. (2010). An open source CFD-DEM perspective. Proceedings of OpenFOAM Workshop, Göteborg.
  • Hatzikyriakou, A., Lin, N., Gong, J., Xian, S., Hu, X., & Kennedy, A. (2015). Component-based vulnerability analysis for residential structures subjected to storm surge impact from Hurricane Sandy. Natural Hazards Review, 17(1), 05015005. doi: 10.1061/(ASCE)NH.1527-6996.0000205
  • Hopkins, M. A., & Daly, S. F. (2003). Recent advances in discrete element modeling of river ice. Proceedings of the 12th Workshop on the Hydraulics of Ice Covered Rivers, Edmonton, Alta.
  • Jiang, M., Sun, C., Zhang, W., & Liu, F. (2015). Coupled CFD-DEM simulations of submarine landslide induced by thermal dissociation of methane hydrate.
  • Liang, Q., & Borthwick, A. G. (2009). Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography. Computers & Fluids, 38(2), 221–234. doi: 10.1016/j.compfluid.2008.02.008
  • Liang, Q., Chen, K.-c., Jingming, H., Xiong, Y., Gang, W., & Qiang, J. (2016). Hydrodynamic modelling of flow impact on structures under extreme flow conditions. Journal of Hydrodynamics, 28(2), 267–274. doi: 10.1016/S1001-6058(16)60628-5
  • Memarzadeh, R., Barani, G., & Ghaeini-Hessaroeyeh, M. (2018). Numerical modeling of sediment transport based on unsteady and steady flows by incompressible smoothed particle hydrodynamics method. Journal of Hydrodynamics, 30(5), 928–942. doi: 10.1007/s42241-018-0111-9
  • Molaei, E. A., Yu, A., & Zhou, Z. (2019). CFD-DEM modelling of mixing and segregation of binary mixtures of ellipsoidal particles in liquid fluidizations. Journal of Hydrodynamics, 31, 1–21. doi: 10.1007/s42241-019-0020-6
  • Nistor, I., Goseberg, N., & Stolle, J. (2017). Tsunami-Driven Debris Motion and Loads: A Critical Review. Frontiers in Built Environment, 3, 2. doi: 10.3389/fbuil.2017.00002
  • O’Brien, J. F., Zordan, V. B., & Hodgins, J. K. (2000). Combining active and passive simulations for secondary motion. IEEE Computer Graphics and Applications, 20(4), 86–96. doi: 10.1109/38.851756
  • Ren, B., Jin, Z., Gao, R., Wang, Y.-x., & Xu, Z.-l. (2013). SPH-DEM modeling of the hydraulic stability of 2D blocks on a slope. Journal of Waterway, Port, Coastal, and Ocean Engineering, 140(6), 04014022. doi: 10.1061/(ASCE)WW.1943-5460.0000247
  • Robb, D. M., Gaskin, S. J., & Marongiu, J.-C. (2016). SPH-DEM model for free-surface flows containing solids applied to river ice jams. Journal of Hydraulic Research, 54(1), 27–40. doi: 10.1080/00221686.2015.1131203
  • Rossetto, T., Peiris, N., Pomonis, A., Wilkinson, S., Del Re, D., Koo, R., & Gallocher, S. (2007). The Indian Ocean tsunami of December 26, 2004: observations in Sri Lanka and Thailand. Natural Hazards, 42(1), 105–124. doi: 10.1007/s11069-006-9064-3
  • Ruiz-Villanueva, V., Bladé, E., Sánchez-Juni, M., Martí-Cardona, B., Díez-Herrero, A., & Bodoque, J. M. (2014). Two-dimensional numerical modeling of wood transport. Journal of Hydroinformatics, 16(5), 1077–1096. doi: 10.2166/hydro.2014.026
  • Ruiz-Villanueva, V., Castellet, E. B., Díez-Herrero, A., Bodoque, J. M., & Sánchez-Juny, M. (2014). Two-dimensional modelling of large wood transport during flash floods. Earth Surface Processes and Landforms, 39(4), 438–449. doi: 10.1002/esp.3456
  • Ruiz-Villanueva, V., Wyżga, B., Zawiejska, J., Hajdukiewicz, M., & Stoffel, M. (2016). Factors controlling large-wood transport in a mountain river. Geomorphology, 272(3), 21–31. doi: 10.1016/j.geomorph.2015.04.004
  • Shan, T., & Zhao, J. (2014). A coupled CFD-DEM analysis of granular flow impacting on a water reservoir. Acta Mechanica, 225(8), 2449–2470. doi: 10.1007/s00707-014-1119-z
  • Simsek, E., Brosch, B., Wirtz, S., Scherer, V., & Krüll, F. (2009). Numerical simulation of grate firing systems using a coupled CFD/discrete element method (DEM). Powder technology, 193(3), 266–273. doi: 10.1016/j.powtec.2009.03.011
  • Singh, P., Hesla, T., & Joseph, D. (2003). Distributed Lagrange multiplier method for particulate flows with collisions. International Journal of Multiphase Flow, 29(3), 495–509. doi: 10.1016/S0301-9322(02)00164-7
  • Singh, P., Joseph, D. D., Hesla, T. I., Glowinski, R., & Pan, T. W. (2000). A distributed Lagrange multiplier/fictitious domain method for viscoelastic particulate flows. Journal of Non-Newtonian Fluid Mechanics, 91(2), 165–188. doi: 10.1016/S0377-0257(99)00104-4
  • Stockstill, R. L., Daly, S. F., & Hopkins, M. A. (2009). Modeling floating objects at river structures. Journal of Hydraulic Engineering, 135(5), 403–414. doi: 10.1061/(ASCE)0733-9429(2009)135:5(403)
  • Wang, J. (2017). Fluid mixing processes in enclosed shallow water flows and applications.
  • Wilcox, D. C. (1998). Turbulence modeling for CFD. La Canada, CA: DCW industries.
  • Wu, T.-R., Chu, C.-R., Huang, C.-J., Wang, C.-Y., Chien, S.-Y., & Chen, M.-Z. (2014). A two-way coupled simulation of moving solids in free-surface flows. Computers & Fluids, 100, 347–355. doi: 10.1016/j.compfluid.2014.05.010
  • Xia, J., Falconer, R. A., Xiao, X., & Wang, Y. (2014). Criterion of vehicle stability in floodwaters based on theoretical and experimental studies. Natural Hazards, 70(2), 1619–1630. doi: 10.1007/s11069-013-0889-2
  • Xiong, Y., Liang, Q., Mahaffey, S., Rouainia, M., & Gang, W. (2018). A novel two-way method for dynamically coupling a hydrodynamic model with a discrete element model (DEM). Journal of Hydrodynamics, 30(1), 1–22. doi: 10.1007/s42241-018-0001-1
  • Yeh, H. H.-j., Robertson, I., & Preuss, J. (2005). Development of design guidelines for structures that serve as tsunami vertical evacuation sites. Washington: Washington State Department of Natural Resources, Division of Geology and Earth Resources.
  • Zhao, T. (2017). Coupled DEM-CFD Analyses of Landslide-Induced Debris Flows. Singapore: Springer.
  • Zhao, X., Liang, D., & Martinelli, M. (2017). MPM simulations of dam-break floods. Journal of Hydrodynamics, 29(3), 397–404. doi: 10.1016/S1001-6058(16)60749-7
  • Zhong, W., Yu, A., Liu, X., Tong, Z., & Zhang, H. (2016). DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder technology, 302, 108–152. doi: 10.1016/j.powtec.2016.07.010
  • Zhou, Fulin, Cui, Hongchao, Shigetaka, A. B. E., Lü, Xilin, Sun, Yuping, Li, Zhenbao, et al. (2012). Inspection report of the disaster of the East Japan earthquake by Sino-Japanese joint mission. Building Sturcture, 42(4), 1–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.