448
Views
5
CrossRef citations to date
0
Altmetric
Research paper

Airborne Feature Matching Velocimetry for surface flow measurements in rivers

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 637-650 | Received 25 Sep 2019, Accepted 19 Aug 2020, Published online: 02 Dec 2020

References

  • Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23(1), 261–304. doi: 10.1146/annurev.fl.23.010191.001401
  • Adrian, R. J. (2005). Twenty years of particle image velocimetry. Experiments in Fluids, 39(2), 159–169. doi: 10.1007/s00348-005-0991-7
  • Alcantarilla, P. F., Bartoli, A., & Davison, A. J. (2012). KAZE features. In European Conference on Computer Vision October 7–13, 2012 (pp. 214–227). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-33783-3_16
  • Alcantarilla, P. F., Nuevo, J., & Bartoli, A. (2013). Fast explicit diffusion for accelerated features in nonlinear scale spaces. In Proceedings of British Machine Vision Conference September 9–13, 2013 (pp. 13.1–13.11). Bristol, UK. doi: 10.5244/C.27.13
  • Altena, B., & Kääb, A. (2017). Weekly glacier flow estimation from dense satellite time series using adapted optical flow technology. Frontiers in Earth Science, 5(53), 1–12. doi: 10.3389/feart.2017.00053
  • Baek, D., & Won Seo, I. (2017). Dye tracing method using aerial imagery by the drone. In Proceedings of Hydraulic Measurements & Experimental Methods Conference July 9–12, 2017, Durham, New Hampshire.
  • Baek, S. J., & Lee, S. J. (1996). A new two-frame particle tracking algorithm using match probability. Experiments in Fluids, 22(1), 23–32. doi: 10.1007/BF01893303
  • Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF: Speeded Up Robust Features. In: Leonardis A., Bischof H., Pinz A. (eds), Computer Vision – ECCV 2006. ECCV 2006. Lecture Notes in Computer Science Vol. 3951. Springer, Berlin, Heidelberg. doi:10.1007/11744023_32
  • Benetazzo, A., Gamba, M., & Barbariol, F. (2017). Unseeded large scale PIV measurements corrected for the capillary-gravity wave dynamics. Rendiconti Lincei, 28(2), 393–404. doi: 10.1007/s12210-017-0606-2
  • Brevis, W., Niño, Y., & Jirka, G.H. (2011). Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry. Experiments in Fluids, 50(1), 135–147. doi: 10.1007/s00348-010-0907-z
  • Bukhari, F., & Dailey, M. N. (2013). Automatic radial distortion estimation from a single image. Journal of Mathematical Imaging and Vision, 45(1), 31–45. doi: 10.1007/s10851-012-0342-2
  • Bung, D. B., & Valero, D. (2016). Optical flow estimation in aerated flows. Journal of Hydraulic Research, 54(5), 575–580. doi: 10.1080/00221686.2016.1173600
  • Cameron, S. M., Nikora, V. I., Albayrak, I., Miler, O., Stewart, M., & Siniscalchi, F. (2013). Interactions between aquatic plants and turbulent flow: A field study using stereoscopic PIV. Journal of Fluid Mechanics, 732, 345–372. doi: 10.1017/jfm.2013.406
  • Cao, L., Detert, M., & Li, D. (2020). Airborne image velocimetry system and its application on river surface flow field measurement [Chinese title: ]. Journal of Basic Science and Engineering. ( in press).
  • Cao, L., Weitbrecht, V., Li, D., & Detert, M. (2018). Feature tracking velocimetry applied to airborne measurement data from Murg creek. In E3S Web of Conferences (Vol. 40, p. 05030). EDP Sciences. doi: 10.1051/e3sconf/20184005030
  • Catalano, A., García, C.M., & Rodríguez, A. (2017). Rectification of image velocity results (RIVeR): A simple and user-friendly toolbox for large scale water surface particle image velocimetry (PIV) and particle tracking velocimetry (PTV). Computers and Geosciences, 109(2017), 323–330. doi: 10.1016/j.cageo.2017.07.009
  • Detert, M., Johnson, E.D., & Weitbrecht, V. (2017). Proof-of-concept for low-cost and non-contact synoptic airborne river flow measurements. International Journal of Remote Sensing, 38(8–10), 2780–2807. doi: 10.1080/01431161.2017.1294782
  • Detert, M., & Weitbrecht, V. (2015). A low-cost airborne velocimetry system: proof of concept. Journal of Hydraulic Research, 53(4), 532–539. doi: 10.1080/00221686.2015.1054322
  • Dietrich, J.T. (2017). Bathymetric structure-from-motion: Extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surface Processes and Landforms, 42(2), 355–364. doi: 10.1002/esp.4060
  • Dobson, D. W., Holland, K. T., & Calantoni, J. (2014). Fast, large-scale, particle image velocimetry-based estimations of river surface velocity. Computers and Geosciences, 70, 35–43. doi: 10.1016/j.cageo.2014.05.007
  • Entwistle, N., Heritage, G., & Milan, D. (2018). Recent remote sensing applications for hydro and morphodynamic monitoring and modelling. Earth Surface Processes and Landforms, 43(10), 2283–2291. doi: 10.1002/esp.4378
  • Fitzgibbon, A.W. (2001). Simultaneous linear estimation of multiple view geometry and lens distortion. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001 December 18–14, 2001 (Vol. 1, pp. 1–8). IEEE. doi: 10.1109/CVPR.2001.990465
  • Fujita, I., & Hino, T. (2003). Unseeded and seeded PIV measurements of river flows videotaped from a helicopter. Journal of Visualization, 6(3), 245–252. doi: 10.1007/BF03181465
  • Fujita, I., Notoya, Y., & Shimono, M.I. (2015). Development of UAV-based river surface velocity measurement by STIV based on high-accurate image stabilization techniques. E-proceedings of the 36th IAHR World Congress June 28–July 03, 2015 (Vol. 28).
  • Fujita, I., Watanabe, H., & Tsubaki, R. (2007). Development of a non-intrusive and efficient flow monitoring technique: The space-time image velocimetry (STIV). International Journal of River Basin Management, 5(2), 105–114. doi: 10.1080/15715124.2007.9635310
  • Gao, X.S., Hou, X.R., Tang, J., & Cheng, H.F. (2003). Complete solution classification for the perspective-three-point problem. IEEE transactions on pattern analysis and machine intelligence, 25(8), 930–943. doi: 10.1109/TPAMI.2003.1217599
  • Goring, D.G., & Nikora, V.I. (2002). Despiking acoustic Doppler velocimeter data. Journal of Hydraulic Engineering, 128(1), 117–126. doi: 10.1061/(ASCE)0733-9429(2002)128:1(117)
  • Horn, B. K., & Schunck, B. G. (1981). Determining optical flow. Artificial intelligence, 17(1–3), 185–203. doi: 10.1016/0004-3702(81)90024-2
  • Johnson, E.D., & Cowen, E.A. (2017). Remote determination of the velocity index and mean streamwise velocity profiles. Water Resources Research, 53(9), 7521–7535. doi: 10.1002/2017WR020504
  • Jux, C., Sciacchitano, A., Schneiders, J.F., & Scarano, F. (2018). Robotic volumetric PIV of a full-scale cyclist. Experiments in Fluids, 59(74), 1–15. doi: 10.1007/s00348-018-2524-1
  • Khalid, M., Pénard, L., & Mémin, E. (2019). Optical flow for image-based river velocity estimation. Flow Measurement and Instrumentation, 65, 110–121. doi: 10.1016/j.flowmeasinst.2018.11.009
  • Kompenhans, J., & Tropea, C. (1997). Particle image velocimetry. Measurement Science and Technology, 8(12), 1379–1583. doi: 10.1088/0957-0233/8/12/002
  • Le Coz, J., Hauet, A., Pierrefeu, G., Dramais, G., & Camenen, B. (2010). Performance of image-based velocimetry (LSPIV) applied to flash-flood discharge measurements in Mediterranean rivers. Journal of Hydrology, 394(1–2), 42–52. doi: 10.1016/j.jhydrol.2010.05.049
  • Legleiter, C. J., Kinzel, P. J., & Nelson, J. M. (2017). Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information. Journal of Hydrology, 554, 490–506. doi: 10.1016/j.jhydrol.2017.09.004
  • Lin, D., Grundmann, J., & Eltner, A. (2019). Evaluating image tracking approaches for surface velocimetry with thermal tracers. Water Resources Research, 55(4), 3122–3136. doi: 10.1029/2018WR024507
  • Lowe, D.G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. doi: 10.1023/B:VISI.0000029664.99615.94
  • Lucas, B.D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th international joint conference on Artificial Intelligence-Volume 2 August 24–28, 1981 (pp. 674–679). Morgan Kaufmann Publishers Inc.
  • Muja, M., & Lowe, D.G. (2014). Scalable nearest neighbor algorithms for high dimensional data. IEEE transactions on pattern analysis and machine intelligence, 36(11), 2227–2240. doi: 10.1109/TPAMI.2014.2321376
  • Muste, M., Fujita, I., & Hauet, A. (2008). Large-scale particle image velocimetry for measurements in riverine environments. Water Resources Research, 44(4), 1–14. doi: 10.1029/2008WR006950
  • Nezu, I., & Nakagawa, H. (1993). Turbulence in open-channel flows. IAHR monograph series. AA Balkema.
  • Perks, M. T., Russell, A. J., & Large, A. R. (2016). Technical note: Advances in flash flood monitoring using unmanned aerialvehicles (UAVs). Hydrology and Earth System Sciences, 20(10), 4005–4015. doi: 10.5194/hess-20-4005-2016
  • Raffel, M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T., & Kompenhans, J. (2018). Particle image velocimetry: A practical guide. Springer.
  • Rhee, D. S., Do Kim, Y., Kang, B., & Kim, D. (2018). Applications of unmanned aerial vehicles in fluvial remote sensing: An overview of recent achievements. KSCE Journal of Civil Engineering, 22(2), 588–602. doi: 10.1007/s12205-017-1862-5
  • Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. In 2011 International Conference on Computer Vision November 6–13, 2011 (pp. 2564–2571). Barcelona: IEEE. doi:10.1109/ICCV.2011.6126544
  • Shi, J., & Tomasi, C. (1994). Good features to track. In IEEE Conference on Computer Vision and Pattern Recognition June 21–23, 1994 (pp. 593–600). Seattle, WA, USA. doi:10.1109/CVPR.1994.323794.
  • Spreafico, M., & Weingartner, R. (2005). The hydrology of Switzerland. Federal Office for the Environment (FOEN), Reports of the FOWG, Water Series, No. 7. Berne, Switzerland.
  • Thielicke, W., & Stamhuis, E. J. (2014). PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. Journal of Open Research Software, 2, e30. doi: 10.5334/jors.bl
  • Thumser, P., Haas, C., Tuhtan, J. A., Fuentes-Pérez, J. F., & Toming, G. (2017). RAPTOR-UAV: Real-time particle tracking in rivers using an unmanned aerial vehicle. Earth Surface Processes and Landforms, 42(14), 2439–2446. doi: 10.1002/esp.4199
  • Tomasi, C., & Kanade, T. (1991). Detection and tracking of point features (Report No. CMU-CS-91-132). Pennsylvania: Carnegie Mellon University.
  • Torr, P. H., & Zisserman, A. (2000). MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 78(1), 138–156. doi: 10.1006/cviu.1999.0832
  • Tsubaki, R. (2017). On the texture angle detection used in space-time image velocimetry (STIV). Water Resources Research, 53(12), 10908–10914. doi: 10.1002/2017WR021913
  • Turnipseed, D.P., & Sauer, V.B. (2010). Discharge measurements at gaging stations. U.S. Geological Survey Techniques and Methods, 3(A8), 87 p. doi: 10.3133/tm3A8
  • Weitbrecht, V., Kühn, G., & Jirka, G. H. (2002). Large scale PIV-measurements at the surface of shallow water flows. Flow Measurement and Instrumentation, 13(5–6), 237–245. doi: 10.1016/S0955-5986(02)00059-6
  • Westerweel, J., & Scarano, F. (2005). Universal outlier detection for PIV data. Experiments in Fluids, 39(6), 1096–1100. doi: 10.1007/s00348-005-0016-6
  • Zhang, G., & Chanson, H. (2018). Application of local optical flow methods to high-velocity free-surface flows: Validation and application to stepped chutes. Experimental Thermal and Fluid Science, 90, 186–199. doi: 10.1016/j.expthermflusci.2017.09.010
  • Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence, 22(11), 1330–1334. doi: 10.1109/34.888718
  • Zhong, Q., Chen, Q., Wang, H., Li, D., & Wang, X. (2016). Statistical analysis of turbulent super-streamwise vortices based on observations of streaky structures near the free surface in the smooth open channel flow. Water Resources Research, 52(5), 3563–3578. doi: 10.1002/2015WR017728
  • Zuniga Zamalloa, C. C., & Landry, B. J. (2017). Large scale feature tracking velocimetry for retrieving velocity of surface waters. In Proceedings of Hydraulic Measurements & Experimental Methods Conference July 9–12, 2017, Durham, New Hampshire.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.