565
Views
6
CrossRef citations to date
0
Altmetric
Research paper

An exponential-based model for predicting velocity fields in partially vegetated channels

ORCID Icon, , ORCID Icon &
Pages 864-879 | Received 02 Aug 2021, Accepted 07 Apr 2022, Published online: 08 Aug 2022

References

  • Bouma, T. J., Duren, L. A. V., Temmerman, S., Claverie, T., Blanco-Garcia, A., Ysebaert, T., & Herman, P. M. J. (2007). Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume and modelling experiments. Continental Shelf Research, 27(8), 1020–1045. https://doi.org/10.1016/j.csr.2005.12.019
  • Caroppi G, Gualtieri P, Fontana N, Giugni M. (2020). Effects of vegetation density on shear layer in partly vegetated channels. Journal of Hydro-environment Research, 30, 82–90. https://doi.org/10.1016/j.jher.2020.01.008
  • Chen, M., Lou, S., Liu, S. G., Ma, G. F., Liu, H. Z., Zhong, G. H., & Zhang, H. (2020). Velocity and turbulence affected by submerged rigid vegetation under waves, currents and combined wave-current flows. Coastal Engineering, 159, 103727. doi:10.1016/j.coastaleng.2020.103727
  • Cheng, N. S. (2013). Calculation of drag coefficient for arrays of emergent circu-lar cylinders with pseudofluid model. Journal of Hydraulic Engineering, 139(6), 602–611. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000722
  • Cheng, N. S., & Nguyen, H. T. (2011). Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows. Journal of Hydraulic Engineering, 137(9), 995–1004. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000377
  • Coon, W. F., Bernard, J. M., & Seischab, F. K. (2000). Effects of a cattail wetland on water quality of irondequoit creek near rochester. US Geological Survey. https://doi.org/10.3133/wri004032
  • Cornacchia, L., Van De Koppel, J., Van Der Wal, D., Wharton, G., Puijalon, S., & Bouma, T. J. (2018). Landscapes of facilitation: how self-organized patchiness of aquatic macrophytes promotes diversity in streams. Ecology, 99(4), 832–847. doi:10.1002/ecy.2177
  • Etminan, V., Lowe, R. J., & Ghisalberti, M. (2017). A new model for predicting the drag exerted by vegetation canopies. Water Resources Research, 53(4), 3179–3196. https://doi.org/10.1002/2016WR020090.
  • Goring, D. G., & Nikora, V. I. (2002). Despiking Acoustic Doppler Velocimeter Data. Journal of Hydraulic Engineering, 128(1), 117–126. doi:10.1061/(ASCE)0733-9429(2002)128:1(117)
  • Grace, J. B., & Harrison, J. S. (1986). THE BIOLOGY OF CANADIAN WEEDS.: 73.Typha latifoliaL.,Typha angustifoliaL. andTypha xglauca Godr.. Canadian Journal of Plant Science, 66(2), 361–379. https://doi.org/10.4141/cjps86-051
  • Gu, J., Shan, Y., Liu, C., & Liu, X. (2019). Feedbacks of flow and bed morphology from a submerged dense vegetation patch without upstream sediment supply. Environmental Fluid Mechanics, 19(2), 475–493. https://doi.org/10.1007/s10652-018-9633-5
  • Hu, Z., Wang, Z. B., Zitman, T. J., Stive, M. J., & Bouma, T. J. (2015). Predicting long-term and short-term tidal flat morphodynamics using a dynamic equilibrium theory. Journal of Geophysical Research: Earth Surface, 120(9), 1803–1823. https://doi.org/10.1002/2015JF003486
  • Huai, W. X., Zhang, J., Katul, G. G., Cheng, Y. G., Tang, X., & Wang, W. J. (2019). The structure of turbulent flow through submerged flexible vegetation. Journal of Hydrodynamics, 31(2), 274-292. doi:10.1007/s42241-019-0023-3
  • Huai W, Xue W, Qian Z (2015) Large-eddy simulation of turbulent rectangular open-channel flow with an emergent rigid vegetation patch. Advances in Water Resources 80, 30-42. doi:10.1016/j.advwatres.2015.03.006
  • Kim HS, Kimura I, Shimizu Y. (2015). Bed morphological changes around a finite patch of vegetation. Earth Surface Processes and Landforms. 40(3), 375–388. https://doi.org/10.1002/esp.3639
  • Kothyari, U.C., Hayashi, K., Hashimoto, H., (2009). Drag coefficient of unsubmerged rigid vegetation stems in open channel flows. Journal of Hydraulic Research. 47(6), 691–699. https://doi.org/10.3826/jhr.2009.3283.
  • Li, Q., Zeng, Y. H., & Zha, W. (2020). Velocity distribution and turbulence structure of open channel flow with floating-leaved vegetation. Journal of Hydrology, 590, 125298. https://doi.org/10.1016/j.jhydrol.2020.125298
  • Licci S, Nepf H, Delolme C, Marmonier, P., Bouma T. J., & Puijalon, S. (2019). The role of patch size in ecosystem engineering capacity: a case study of aquatic vegetation. Aquatic Sciences, 81(3), 1–11. doi:10.1007/s00027-019-0635-2
  • Lightbody AF, Nepf H. (2006). Prediction of velocity profiles and longitudinal dispersion in salt marsh vegetation. Limnology and Oceanography, 51(1), 218–228. https://doi.org/10.4319/lo.2006.51.1.0218
  • Liu C, Hu Z, Lei J, Nepf H. (2018). Vortex structure and sediment deposition in the wake behind a finite patch of model submerged vegetation. Journal of Hydraulic Engineering. 144(2), 04017065. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001408
  • Liu, C., Luo, X., Liu, X. N., & Yang, K. J. (2013). Modeling depth-averaged velocity and bed shear stress in compound channels with emergent and submerged vegetation. Advances in Water Resources, 60, 148–159. https://doi.org/10.1016/j.advwatres.2013.08.002
  • Liu C, Nepf H, (2016). Sediment deposition within and around a finite patch of model vegetation over a range of channel velocity. Water Resources Research. 52(1), 600–612. https://doi.org/10.1002/2015WR018249
  • Liu, C., & Shan, Y. (2019). Analytical model for predicting the longitudinal profiles of velocities in a channel with a model vegetation patch. Journal of Hydrology, 576, 561–574. https://doi.org/10.1016/j.jhydrol.2019.06.076
  • Liu, C., & Shan, Y. (2022). Impact of an emergent model vegetation patch on flow adjustment and velocity. Proceedings of the Institution of Civil Engineers - Water Management, 175(2), 55–66. https://doi.org/10.1680/jwama.20.00108
  • Liu, C., Shan, Y., Liu, X., Yang, K., & Liao, H. (2016). The effect of floodplain grass on the flow characteristics of meandering compound channels. Journal of Hydrology, 542, 1–17. https://doi.org/10.1016/j.jhydrol.2016.07.037
  • Liu, C., Shan, Y., & Nepf, H. (2021). Impact of stem size on turbulence and sediment resuspension under unidirectional flow. Water Resources Research, 57(3), e2020WR028620. https://doi.org/10.1029/2020WR028620
  • Liu, C., Shan, Y., Sun, W., Yan, C. H., & Yang, K. J. (2020a). An open channel with an emergent vegetation patch: Predicting the longitudinal profiles of velocities based on exponential decay. Journal of Hydrology, 582, 124429. doi:10.1016/j.jhydrol.2019.124429
  • Liu, M. Y., Huai, W. X., Yang, Z. H., & Zeng, Y. H. (2020b). A genetic programming-based model for drag coefficient of emergent vegetation in open channel flows. Advances in Water Resources, 140, 103582. https://doi.org/10.1016/j.advwatres.2020.103582
  • Lu, Y., Cheng, N. S., & Wei, M. (2021). Formulation of bed shear stress for computing bed-load transport rate in vegetated flows. Physics of Fluids, 33(11), 115105. https://doi.org/10.1063/5.0067851
  • Manners, R. B., Wilcox, A. C., Li, K., Lightbody, A. F., Stella, J. C., & Sklar, L. S. (2015). When do plants modify fluvial processes? Plant-hydraulic interactions under variable flow and sediment supply rates. Journal of Geophysical Research: Earth Surface, 120(2), 325–345. doi:10.1002/2014JF003265
  • Nepf, H. (2012). Flow and transport in regions with aquatic vegetation. Annual Review of Fluid Mechanics, 44(1), 123–142. doi:10.1146/annurev-fluid-120710-101048
  • Rominger, J. T., & Nepf, H. (2011). Flow adjustment and interior flow associated with a rectangular porous obstruction. Journal of Fluid Mechanics, 680, 636–659. https://doi.org/10.1017/jfm.2011.199
  • Sand-jensen, K. (1998). Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams. Freshwater Biology, 39(4), 663–679. doi:10.1046/j.1365-2427.1998.00316.x
  • Sand-Jensen, K., & Pedersen, M. L. (2008). Streamlining of plant patches in streams. Freshwater Biology, 53(4), 714–726. https://doi.org/10.1111/j.1365-2427.2007.01928.x
  • Schoelynck, J. (2012). Self-organised patchiness and scale-dependent bio-geomorphic feedbacks in aquatic river vegetation. Ecography, 35(8), 760–768. https://doi.org/10.1111/j.1600-0587.2011.07177.x
  • Shan, Y., Liu, X., Yang, K., & Liu, C. (2017). Analytical model for stage-discharge estimation in meandering compound channels with submerged flexible vegetation. Advances in Water Resources, 108, 170–183. https://doi.org/10.1016/j.advwatres.2017.07.021
  • Shan, Y. Q., Zhao, T., Liu, C., & Nepf, H. (2020). Turbulence and bed-load transport in channels with randomly distributed emergent patches of model vegetation. Geophysical Research Letters, 47(12), e2020GL087055. https://doi:10.1029/2020GL087055
  • Sonnenwald, F., Stovin, V., & Guymer, I. (2018). Estimating drag coefficient for arrays of rigid cylinders representing emergent vegetation. Journal of Hydraulic Research, 591–597. https://doi.org/10.1080/00221686.2018.1494050.
  • Soulsby, R. (1981). Measurements of the Reynolds stress components close to a marine sand bank. Marine Geology, 42(1-4), 35–47. https://doi.org/10.1016/0025-3227(81)90157-2
  • Tanino, Y., & Nepf, H. M. (2008). Laboratory investigation of mean drag in a random array of rigid, emergent cylinders. Journal of Hydraulic Engineering, 134(1), 34–41. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:1(34).
  • Tinoco, R. O., & Coco, G. (2016). A laboratory study on sediment resuspension within arrays of rigid cylinders. Advances in Water Resources, 92, 1–9. doi:10.1016/j.advwatres.2016.04.003
  • Vandenbruwaene, W., Schwarz, C., Bouma, T. J., Meire, P., & Temmerman, S. (2015). Landscape-scale flow patterns over a vegetated tidal marsh and an unvegetated tidal flat: Implications for the landform properties of the intertidal floodplain. Geomorphology, 231, 40–52. doi:10.1016/j.geomorph.2014.11.020
  • Vandenbruwaene, W., Temmerman, S., Bouma, T. J., Klaassen, P. C., de Vries, M. B., Callaghan, D. P., & Meire, P. (2011). Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape. Journal of Geophysical Research: Earth Surface, 116(F1), 155–170. . https://doi.org/10.1029/2010jf001788
  • White, B. L., & Nepf, H. (2007). Shear instability and coherent structures in shallow flow adjacent to a porous layer. Journal of Fluid Mechanics, 593, 1–32. doi:10.1017/S0022112007008415
  • White, B. L., & Nepf, H. (2008). A vortex-based model of velocity and shear stress in a partially vegetated shallow channel. Water Resources Research, 44(1), W01412. https://doi.org/10.1029/2006WR005651
  • White, F. M. (1991). Viscous fluid flow (second ed., 614 pp.). McGraw-Hill.
  • Widdows, J., Pope, N. D., & Brinsley, M. D. (2008). Effect of Spartina anglica stems on near-bed hydrodynamics, sediment erodability and morphological changes on an intertidal mudflat. Marine Ecology Progress Series, 362, 45–57. https://doi.org/10.3354/meps07448
  • Xu, Z. X., Ye, C., Zhang, Y. Y., Wang, X. K., & Yan, X. F. (2019). 2D numerical analysis of the influence of near-bank vegetation patches on the bed morphological adjustment. Environmental Fluid Mechanics, 707–738. https://doi.org/10.1007/s10652-019-09718-5
  • Yan, C. H., Shan, Y. Q., Sun, W., Liu, C., & Liu, X. N. (2020). Modeling the longitudinal profiles of streamwise velocity in an open channel with a model patch of vegetation. Environmental Fluid Mechanics, 20, 1441–1462. https://doi.org/10.1007/s10652-020-09747-5
  • Yang, S., Li, H., Ysebaert, T., Bouma, T., Zhang, W., Wang, Y., Li, P., Li, M., & Ding, P. (2008). Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: On the role of physical and biotic controls, Estuarine. Estuarine, Coastal and Shelf Science, 77(4), 657–671. https://doi.org/10.1016/j.ecss.2007.10.024
  • Yuan, Y., Huang, J., Wang, Z., Gu, Y., Li, R., Li, K., & Feng, J. (2020). Experimental investigations on the dissipation process of supersaturated total dissolved gas: Focus on the adsorption effect of solid walls. Water Research, 183, 116087. https://doi.org/10.1016/j.watres.2020.116087
  • Zhang, J., Huai, W. X., Shi, H. R., & Wang, W. J. (2021). Estimation of the longitudinal dispersion coefficient using a two-zone model in a channel partially covered with artificial emergent vegetation. Environmental Fluid Mechanics, 21(1), 155–175. https://doi.org/10.1007/s10652-020-09766-2
  • Zong, L., & Nepf, H. (2010). Flow and deposition in and around a finite patch of vegetation. Geomorphology, 116(3-4), 363–372. https://doi.org/10.1016/j.geomorph.2009.11.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.