411
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Experimental approach of free flow to pressurized flow in sewer pipes: upstream to downstream pressurization

ORCID Icon, , , , & ORCID Icon
Pages 907-921 | Received 09 May 2021, Accepted 06 May 2022, Published online: 07 Aug 2022

References

  • Bourdarias, C., & Gerbi, S. (2007). A finite volume scheme for a model coupling free surface and pressurised flows in pipes. Journal of Computational and Applied Mathematics, 209(1), 109–131. https://doi.org/10.1016/j.cam.2006.10.086
  • Brater, E. F., King, H. W., Lindell, J. E., & Wei, C. Y. (1996). Handbook of hydraulics. McGraw-Hill.
  • Brunone, B., & Berni, A. (2010). Wall Shear Stress in Transient Turbulent Pipe Flow by Local Velocity Measurement. Journal of Hydraulic Engineering, 136(10), 716–726. https://doi.org/10.1061/(asce)hy.1943-7900.0000234
  • Bucur, D. M., Dunca, G., & Cervantes, M. J. (2017). Maximum pressure evaluation during expulsion of entrapped air from pressurized pipelines. Journal of Applied Fluid Mechanics, 10(1), 11–20. https://doi.org/10.18869/acadpub.jafm.73.238.26313
  • Chaudhry, M. H. (1982). Applied hydraulic transients, 426–431. New York: Van Nostrand Reinhold.
  • Ferreri, G. B., Ciraolo, G., & Lo Re, C. (2014). Storm sewer pressurization transient – An experimental investigation. Journal of Hydraulic Research, 52(5), 666–675. https://doi.org/10.1080/00221686.2014.917726
  • Fuamba, M. (2002). Contribution on transient flow modelling in storm sewers. Journal of Hydraulic Research, 40(6), 685–693. https://doi.org/10.1080/00221680209499915
  • Guo, S. H., Qian, Y., Zhu, D. Z., Zhang, W., & Edwini-Bonsu, S. (2018). Effects of drop structures and pump station on sewer air pressure and hydrogen sulfide: field investigation. Journal of Environmental Engineering, 144(3), 04018011. https://doi.org/10.1061/(asce)ee.1943-7870.0001336
  • Guo, Q. H., & Song, C. C. S. (1990). Surging in urban storm drainage systems. Journal of Hydraulic Engineering (New York, N.Y.), 116(12), 1523–1537. https://doi.org/10.1061/(ASCE)0733-9429(1990)116
  • Guo, Q., & Song, C. C. S. (1991). Dropshaft Hydrodynamics under Transient Conditions. Journal of Hydraulic Engineering, 117(8), 1042–1055. https://doi.org/10.1061/(asce)0733-9429(1991)117:8(1042)
  • Hamam, M. A., & McCorquodale, J. A. (1982). Transient conditions in the transition from gravity to surcharged sewer flow. Canadian Journal of Civil Engineering, 9(2), 189–196. https://doi.org/10.1139/l82-022
  • Khani, D., Lim, Y. H., & Malekpour, A. (2020). Hydraulic Transient Analysis of Sewer Pipe Systems Using a Non-Oscillatory Two-Component Pressure Approach. Water, 12(10). https://doi.org/10.3390/w12102896
  • Lee, N. H. (2005). Effect of pressurization and expulsion of entrapped air in pipelines (Ph. D. thesis). Georgia, United States: Georgia Institute of Technology.
  • Li, J., & McCorquodale, A. (1999). Modeling mixed flow in storm sewers. Journal of Hydraulic Engineering, 125(11), 1170–1180. https://doi.org/10.1061/(asce)0733-9429(1999)125:11(1170)
  • Li, J., & McCorquodale, A. (2001). Modeling the Transition from Gravity to Pressurized Flows in Sewers. Specialty Symposium on Urban Drainage Modeling at the World Water and Environmental Resources Congress 2001 (pp. 134–145). https://doi.org/10.1061/40583(275)14
  • Montes, C., Ortiz, H., Vanegas, S., Kapelan, Z., Berardi, L., & Saldarriaga, J. (2022). Sediment transport prediction in sewer pipes during flushing operation. Urban Water Journal, 19(1), 1–14. https://doi.org/10.1080/1573062X.2021.1948077
  • Pozos-Estrada, O., Pothof, I., Fuentes-Mariles, O. A., Dominguez-Mora, R., Pedrozo-Acuña, A., Meli, R., & Peña, F. (2015). Failure of a drainage tunnel caused by an entrapped air pocket. Urban Water Journal, 12(6), 446–454.
  • Qian, Y., Zhu, D. Z., & Edwini-Bonsu, S. (2018). Air Flow Modeling in a Prototype Sanitary Sewer System. Journal of Environmental Engineering, 144(3), 04018008. https://doi.org/10.1061/(asce)ee.1943-7870.0001342
  • Saldarriaga, J., Salcedo, C., Solarte, L., Pulgarín, L., Rivera, M. L., Camacho, M., Iglesias-Rey, P. L., Martínez-Solano, F. J., & Cunha, M. (2020). Reducing flood risk in changing environments: Optimal location and sizing of stormwater tanks considering climate change. Water (Switzerland), 12(9), 1–24. https://doi.org/10.3390/w12092491
  • Sundstrom, L. R. J., & Cervantes, M. J. (2017). Transient wall shear stress measurements and estimates at high Reynolds numbers. Flow Measurement and Instrumentation, 58(June), 112–119. https://doi.org/10.1016/j.flowmeasinst.2017.10.003
  • Trajkovic, B., Ivetic, M., Calomino, F., & D’Ippolito, A. (1999). Investigation of transition from free surface to pressurized flow in a circular pipe. Water Science and Technology, 39(9), 105–112. https://doi.org/10.1016/S0273-1223(99)00222-X
  • Vasconcelos, J. G., & Wright, S. J. (2003). Surges associated with air expulsion in near-horizontal pipelines. Proceedings of ASME FEDSM’03. 4th ASME_JSME Joint Fluids Engineering Conference. FEDSM2003-45265.
  • Vasconcelos, J. G., Wright, S. J., & Roe, P. L. (2006). Improved Simulation of Flow Regime Transition in Sewers: Two-Component Pressure Approach. Journal of Hydraulic Engineering, 132(6), 553–562. https://doi.org/10.1061/(asce)0733-9429(2006)132:6(553)
  • Vasconcelos, J. G., & Wright, S. J. (2007). Comparison between the two-component pressure approach and current transient flow solvers. Journal of Hydraulic Research, 45(2), 178–187. https://doi.org/10.1080/00221686.2007.9521758
  • Wiggert, D. (1972). Transient flow in free-surface, pressurized systems. Journal of the Hydraulics Division, 98(1), 11–27. https://doi.org/10.1061/JYCEAJ.0003189
  • Willems, P., Arnbjerg-Nielsen, K., Olsson, J., & Nguyen, V. T. V. (2012). Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. Atmospheric Research, 103, 106–118. https://doi.org/10.1016/j.atmosres.2011.04.003
  • World Meteorological Organisation. (2020). State of the global climate 2020: provisional report. https://www.ncdc.noaa.gov/sotc/global/202008
  • Zhang, W., Zhu, D. Z., Rajaratnam, N., Edwini-Bonsu, S., Fiala, J., & Pelz, W. (2016). Use of air circulation pipes in deep dropshafts for reducing air induction into sanitary sewers. Journal of Environmental Engineering, 142(4), 04015092. doi:10.1061/(ASCE)EE.1943-7870.0001046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.