332
Views
3
CrossRef citations to date
0
Altmetric
Research paper

Flow aeration and surface fluctuations in moderate-slope stepped chute: from aeration inception to fully developed aerated flow

ORCID Icon, , , &
Pages 944-958 | Received 23 May 2021, Accepted 06 May 2022, Published online: 23 Aug 2022

References

  • Amador, A., Sánchez-Juny, M., & Dolz, J. (2006). Characterization of the non-aerated flow region in a stepped spillway by PIV. Journal of Fluids Engineering, 128(6), 1266–1273. https://doi.org/10.1115/1.2354529
  • Amador, A., Sánchez-Juny, M., & Dolz, J. (2009). Developing flow region and pressure fluctuations on steeply sloping stepped spillways. Journal of Hydraulic Engineering, 135(12), 1092–1100. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000118
  • Bai, Z., Bai, R., Tang, R., Wang, H., & Liu, S. (2021). Case study of prototype hydraulic jump on slope: air entrainment and free surface measurement. Journal of Hydraulic Engineering, 147(9), 05021007. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001916
  • Boes, R. M. (2000). Scale effects in modelling two-phase stepped spillway flow. Int. Workshop Hydraulics of Stepped Spillways, Zurich, 53–60.
  • Boes, R. M., & Hager, W. H. (2003). Two-phase flow characteristics of stepped spillways. Journal of Hydraulic Engineering, 129(9), 661–670. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:9(661)
  • Bung, D. B. (2011). Developing flow in skimming flow regime on embankment stepped spillways. Journal of Hydraulic Research, 49(5), 639–648. https://doi.org/10.1080/00221686.2011.584372
  • Bung, D. B. (2013). Non-intrusive detection of air-water surface roughness in self-aerated chute flows. Journal of Hydraulic Research, 51(3), 322–329. https://doi.org/10.1080/00221686.2013.777373
  • Carosi, G., & Chanson, H. (2006). Air-water time and length scales in skimming flow on a stepped spillway. Application to the spray characterisation. Rep. No. CH59/06. The University of Queensland.
  • Chanson, H. (1993). Stepped spillway flows and air entrainment. Canadian Journal of Civil Engineering, 20(3), 422–435. https://doi.org/10.1139/l93-057
  • Chanson, H. (1994). Hydraulics of skimming flows over stepped channels and spillways. Journal of Hydraulic Research, 32(3), 445–460. https://doi.org/10.1080/00221689409498745
  • Chanson, H. (1997a). Air bubble entrainment in open channels: Flow structure and bubble size distributions. International Journal of Multiphase Flow, 23(1), 193–203. https://doi.org/10.1016/S0301-9322(96)00063-8
  • Chanson, H. (1997b). Measuring air–water interface area in super critical open channel flow. Water Research, 31(6), 1414–1420. https://doi.org/10.1016/S0043-1354(96)00339-9
  • Chanson, H. (2001). The hydraulics of stepped chutes and spillways. Balkema.
  • Chanson, H., & Toombes, L. (2001). Experimental investigations of air entrainment in transition and skimming flows down a stepped chute. Rep. No. CE158. The University of Queensland.
  • Chanson, H., & Toombes, L. (2002). Air–water flows down stepped chutes: Turbulence and flow structure observations. International Journal of Multiphase Flow, 28(11), 1737–1761. https://doi.org/10.1016/S0301-9322(02)00089-7
  • Felder, S., & Chanson, H. (2008). Turbulence ant turbulent length and time scales in skimming flows on a stepped spillway: Dynamic similarity, physical modelling and scale effects. Rep. No. CH64/07. University of Queensland.
  • Felder, S., & Chanson, H. (2009). Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute. Experiments in Fluids, 47(1), 1–18. https://doi.org/10.1007/s00348-009-0628-3
  • Felder, S., & Chanson, H. (2012). Free-surface profiles, velocity and pressure distributions on a broad-crested weir: A physical study. Journal of Irrigation and Drainage Engineering, 138(12), 1068–1074. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000515
  • Felder, S., & Chanson, H. (2013). Aeration, flow instabilities, and residual energy on pooled stepped spillways of embankment dams. Journal of Irrigation and Drainage Engineering, 139(10), 880–887. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000627
  • Felder, S., & Chanson, H. (2014). Effects of step pool porosity upon flow aeration and energy dissipation on pooled stepped spillways. Journal of Hydraulic Engineering, 140(4), 04014002. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000858
  • Gonzalez, C. A. (2005). An experimental study of free-surface aeration on embankment stepped chutes [Ph.D. thesis]. Dept. Civil Engineering, The University of Queensland.
  • Gonzalez, C. A., & Chanson, H. (2008). Turbulence and cavity recirculation in air-water skimming flows on a stepped spillway. Journal of Hydraulic Research, 46(1), 65–72. https://doi.org/10.1080/00221686.2008.9521843
  • Hager, W. H. (1991). Uniform aerated chute flow. Journal of Hydraulic Engineering, 117(4), 528–533. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:4(528)
  • Hohermuth, B., Boes, R., & Felder, S. (2021). High-velocity air-water flow measurements in a prototype tunnel chute: Scaling of void fraction and interfacial velocity. Journal of Hydraulic Engineering, 147(11), 04021044. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001936
  • Hunt, S. L., & Kadavy, K. C. (2013). Inception point for embankment dam stepped spillways. Journal of Hydraulic Engineering, 139(1), 60–64. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000644
  • Hunt, S. L., & Kadavy, K. C. (2017). Estimated splash and training wall height requirements for stepped chutes applied to embankment dams. Journal of Hydraulic Engineering, 143(11), 06017018. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001373
  • Knauss, J. (1979). Computation of maximum discharge at overflow rockfill dams (a comparison of different model test results). 13th ICOLD Congress, New Delhi, India, 50(9), 143–159.
  • Kramer, K., & Hager, W. H. (2005). Air transport in chute flows. International Journal of Multiphase Flow, 31(10–11), 1181–1197. https://doi.org/10.1016/j.ijmultiphaseflow.2005.06.006
  • Matos, J. (2000). Hydraulic design of stepped spillways over RCC dams. Proc., 1st Int. Workshop on Hydraulics of Stepped Spillway, A.A. Balkema, Rotterdam, the Netherlands, 187–194.
  • Matos, J. (2003). Roller compacted concrete and stepped spillways. From new dams to dam rehabilitation. Proc., Int. Congress on Conservation and Rehabilitation of Dams: Dam Maintenance and Rehabilitation, A.A. Balkema, Rotterdam, Netherlands, 553–560.
  • Matos, J., & Meireles, I. (2014). Hydraulics of stepped weirs and dams spillways. Engineering challenges, labyrinths of research. In Chanson, H., & Toombes, L. (Eds.), Proc. 5th IAHR Int. Symp. on Hydraulic Structures (ISHS2014), Brisbane, Australia.
  • Matos, J., Pinheiro, A. N., de Carvalho Quintela, A., & Frizell, K. H. (2001). On the role of stepped overlays to increase spillway capacity of embankment dams. In G.H. Midttomme, B. Honningsvag, K. Repp, K. Vaskinn & T. Westeren (Eds.), Dams in European context: Proceedings of the 5th ICOLD European Symposium, Geiranger, Norway, 25–27 June 2001 (pp. 473–483). A.A. Balkema.
  • Meireles, I., & Matos, J. (2009). Skimming flow in the nonaerated region of stepped spillways over embankment dams. Journal of Hydraulic Engineering, 135(8), 685–689. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000047
  • Meireles, I., Matos, J., & Frizell, K. (2007). Measuring air entrainment and flow bulking in skimming flow over steeply sloping stepped chutes. Proc. Hydraulic Measurements and Experimental Methods Conference, EWRI/ASCE & IAHR, Lake Placid, USA.
  • Meireles, I., Renna, F., Matos, J., & Bombardelli, F. A. (2012). Skimming, nonaerated flow on stepped spillways over roller compacted concrete dams. Journal of Hydraulic Engineering, 138(10), 870–877. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000591
  • Meireles, I., Renna, F., Matos, J., & Bombardelli, F. A. (2014). Closure to “Skimming, nonaerated flow on stepped spillways over roller compacted concrete dams”. Journal of Hydraulic Engineering, 140(10), 07014013. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000909
  • Ohtsu, I., Yasuda, Y., & Takahashi, M. (2004). Flow characteristics of skimming flows in stepped channels. Journal of Hydraulic Engineering, 130(9), 860–869. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:9(860)
  • Pfister, M., & Chanson, H. (2014). Two-phase air-water flows: Scale effects in physical modelling. Journal of Hydrodynamics, 26(2), 291–298. https://doi.org/10.1016/S1001-6058(14)60032-9
  • Pfister, M., & Hager, W. H. (2011). Self-entrainment of air on stepped spillways. International Journal of Multiphase Flow, 37(2), 99–107. https://doi.org/10.1016/j.ijmultiphaseflow.2010.10.007
  • Rajaratnam, N. (1990). Skimming flow in stepped spillways. Journal of Hydraulic Engineering, 116(4), 587–591. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:4(587)
  • Takahashi, M., & Ohtsu, I. (2012). Aerated flow characteristics of skimming flow over stepped chutes. Journal of Hydraulic Research, 50(1), 51–60. https://doi.org/10.1080/00221686.2012.702859
  • Toombes, L., & Chanson, H. (2007). Surface waves and roughness in self–aerated supercritical flow. Environmental Fluid Mechanics, 7(3), 259–270. https://doi.org/10.1007/s10652-007-9022-y
  • Valero, D., & Bung, D. B. (2018). Reformulating self-aeration in hydraulic structures: Turbulent growth of free surface perturbations leading to air entrainment. International Journal of Multiphase Flow, 100, 127–142. https://doi.org/10.1016/j.ijmultiphaseflow.2017.12.011
  • Valero, D., Chanson, H., & Bung, D. B. (2020). Robust estimators for free surface turbulence characterization: A stepped spillway application. Flow Measurement and Instrumentation, 76, 101809. https://doi.org/10.1016/j.flowmeasinst.2020.101809
  • Wang, H., & Chanson, H. (2016). Self-similarity and scale effects in physical modelling of hydraulic jump roller dynamics, air entrainment and turbulent scales. Environmental Fluid Mechanics, 16(6), 1087–1110. https://doi.org/10.1007/s10652-016-9466-z
  • Wood, I. R. (1985). Air-water flows. 21st IAHR Congress, Melbourne, Australia, Keynote address, 18–29.
  • Wood, I. R. (1991). Free surface air entrainment on spillways. In I. R. Wood (Ed.), Air entrainment in free-surface flows (pp. 55–84). IAHR, Hydraulic Structures Design Manual 4, Hydraulic Design Considerations, A.A. Balkema.
  • Wood, I. R., Ackers, P., & Loveless, J. (1983). General method for critical point on spillways. Journal of Hydraulic Engineering, 109(2), 308–312. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:2(308)
  • Zhang, G., & Chanson, H. (2016a). Hydraulics of the developing flow region of stepped spillways. Part I: Physical modelling and boundary layer development. Journal of Hydraulic Engineering, 142(7), 04016015. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001138
  • Zhang, G., & Chanson, H. (2016b). Hydraulics of the developing flow region of stepped spillways. Part II: Pressure and velocity fields. Journal of Hydraulic Engineering, 142(7), 04016016. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001136

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.