835
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Analysis of the riverbed backscattered signal registered by ADCPs in different bedload transport conditions – field application

, , , , &
Pages 532-551 | Received 26 Sep 2022, Accepted 06 Jun 2023, Published online: 18 Aug 2023

References

  • Aleixo, M. G., Nones, M., & Ruther, N. (2020). Applying ADCPs for long term monitoring of SSC in rivers. Water Resources Research, 56(1), 1–23. doi:10.1029/2019WR026087
  • Bagnold, R. (1956). The flow of cohesionless grains in fluids. Philos. Trans. R. Soc. London, 249(A), 235–297. doi:10.1098/rsta.1956.0020
  • Banhold, K., Schüttrumpf, H., Hillebrand, G., & Frings, R. (2016). Underestimation of sand loads during bed-load measurements—a laboratory examination. The International Conference On Fluvial Hydraulics (River Flow 2016), 1036–1041. doi:10.1201/9781315644479-165
  • Barrière, J., Oth, A., Hostache, R., & Krein, A. (2015). Bed load transport monitoring using seismic observations in a low-gradient rural gravel bed stream: Seismic monitoring of bedload transport. Geophysical Research Letters, 42(7), 2294–2301. doi:10.1002/2015GL063630
  • Blanckaert, K., Heyman J, H., & Rennie, C. D. (2017). Measurments of bedload sediment transport with an Acoustic Doppler Velocity Profiler(ADVP). J. Hydraulic Engineering, 143(6), doi:10.1061/(ASCE)HY.1943-7900.0001293
  • Brandstetter, B., Gehres, N., & Vollmer, S. (2012). Messverfahren des Geschiebetriebs für Wasserstraßen. Bundesanstalt für Gewässerkunde. BfG-1761.
  • Brumley, B. H., Cabrera, R. G., Deines, K. L., & Terray, E. A. (1991). Performance of a broad-band acoustic Doppler current profiler. IEEE Journal of Oceanic Engineering, 16(4), 402–407. doi:10.1109/48.90905
  • Bunte, K., Swingle, K. W., & Abt, S. R. (2007). Guidelines for using bedload traps in coarse-bedded mountain streams: Construction, installation, operation, and sample processing. Gen. Tech. Rep. RMRS GTR-191., Fort Collins, CO:: U.S. Department of Agriculture, Forest Service.
  • Church, M., & Haschenburger, J. K. (2017). What is the “active layer”? Water Resources Research, 53(1), 5–10. doi:10.1002/2016WR019675
  • Claude, N., Rodrigues, S., Bustillo, V., Bréhéret, J., Macaire, J., & Jugé, P. (2012). Estimating bedload transport in a large sand–gravel bed river from direct sampling, dune tracking and empirical formulas. Geomorphology, 179, 40–57. doi: 10.1016/j.geomorph.2012.07.030
  • Conevski, S., Aleixo, R., Guerrero, M., & Ruther, N. (2020c). Bedload Velocity and Backscattering Strength from Mobile Sediment Bed: A Laboratory Investigation Comparing Bistatic Versus Monostatic Acoustic Configuration. Water, 12(12), 3318. doi:10.3390/w12123318
  • Conevski, S., Guerrero, M., Colin, R., & Ruther, N. (2020a). Acoustic sampling effects on bedload quantification using acoustic Doppler current profilers. Journal of Hydraulic Research, 58(6), 982–1000. doi:10.1080/00221686.2019.1703047
  • Conevski, S., Guerrero, M., Rennie, C., & Ruther, N. (2020b). Towards an evaluation of bedload transport characteristics by using doppler and backscatter outputs from ADCPs. Journal of Hydraulic Research, 59, 703–723. doi:10.1080/00221686.2020.1818311
  • Conevski, S., Guerrero, M., Ruther, N., & Rennie, C. (2019). Laboratory Investigation of Apparent Bedload Velocity Measured by ADCPs under Different Transport Conditions. Journal of Hydraulic Engineering, 145. doi:10.1061/(ASCE)HY.1943-7900.0001632
  • Conevski, S., Guerrero, M., Winterscheid, A., & Ruther, N. (2022). Comprehensive Analysis of the Bottom Tracking features measured by ADCPs in Riverine Environments. Redigert av Miguel Ortega-Sánchez. Granada: IAHR, 814–823. doi:10.3850/IAHR-39WC2521711920221921
  • Conevski, S., Winterscheid, A., Ruther, N., Guerrero, M., & Rennie, o. C. (2018). «Evaluation of an acoustic Doppler technique for bed-load transport measurements in sand-bed rivers.» River Flow 2018. Lyon: Paper presented at River Flow 2018.
  • Darrell, R. J., & Richardson, M. D. (2007). High-Frequency Seafloor Acoustics. Springer Science + Business Media, LLC.
  • Foufoula-Georgiou, E., & Kumar, P. (1994). Wavelet analysis and its applications. Redigert av CHARLES K. CHUI. Academic Press, Inc. 1–43. ISBN 0-12-262850-0.
  • Frings, R. M., & Stefan, V. (2017). Guidelines for sampling bedload transport with minimum uncertainty. Sedimentology, 64(6), 1630–1645. doi:10.1111/sed.12366
  • Gaeuman, D., & Jacobson, R. B. (2006). Acoustic bed velocity and bed load dynamics in a large sand bed river. Journal of Geophysical Research, 111(F2), F02005. doi:10.1029/2005JF000411
  • Gaweesh, M., & Van Rijn, L. (1994). Bed-Load Sampling in Sand-Bed Rivers. Journal of Hydraulic Engineering, 120(12), 1364–1384. doi:10.1061/(ASCE)0733-9429(1994)120:12(1364)
  • Geay, T., Belleudy, P., Gervaise, C., Habersack, H., Aigner, J., Kreisler, A., Seitz, H., & Laronne, J. B. (2017). Passive acoustic monitoring of bed load discharge in a large gravel bed river. Journal of Geophysical Research: Earth Surface, 122(2), 528–545. doi:10.1002/2016JF004112
  • Gomez, B. (1991). Bedload transport. Earth-Science Reviews, 31(2), 89–132. doi:https://doi.org/10.1016/0012-8252(91)90017-A
  • Guerrero, M., Rüther, N., Szupiany, R., Haun, S., Baranya, S., & Latosinski, F. (2016). The acoustic properties of suspended sediment in large rivers: Consequences on ADCP methods applicability. Water (Switzerland) (MDPI AG, 8(1), 13. doi:10.3390/w8010013
  • Guerrero, M., Szupiany, R., & Latosinski, F. (2013). Multi-frequency acoustics for suspended sediment studies: an application in the Parana River. Journal of Hydraulic Research, 51(6), 696–707. doi:10.1080/00221686.2013.849296
  • Guta, H., Hurther, D., & Chauchat, J. (2022). Bedload and Concentration Effects on Turbulent Suspension Properties in Heavy Particle Sheet Flows. Journal of Hydraulic Engineering, 148(7), 04022012. doi:10.1061/(ASCE)HY.1943-7900.0001988
  • Haun, S., Rüther, N., Baranya, S., & Guerrero, M. (2015). Comparison of real time suspended sediment transport measurements in river environment by LISST instruments in stationary and moving operation mode. Flow Measurement and Instrumentation, 41, 10–17. doi:10.1016/j.flowmeasinst.2014.10.009
  • Hsu, L., Finnegan, N. J., & Brodsky, E. E. (2011). A seismic signature of river bedload transport during storm events. Geophysical Research Letters, 38. https://doi.org/10.1029/2011GL047759
  • Hubbell, D. W. (1964). Apparatus and techniques for measuring bedload. USGS, U. S. Govt. Print. Off. doi:10.3133/wsp1748.
  • Hurther, D., & Thorne, P. D. (2011). Suspension and near-bed load sediment transport processes above a migrating, sand-rippled bed under shoaling waves. Journal of Geophysical Research: Oceans, 116. doi:10.1029/2010JC006774
  • Ivakin, A. N. (1981). Underwater sound scattering by volume inhomogeneities of a bottom medium bounded by a rough surface. Soviet Physics Acoustics, 27(3), 212–215.
  • Jamieson, E. C., Rennie, C. D., Jacobson, R. B., & Townsend, R. D. (2011). Evaluation of ADCP apparent bed load velocity in a large sand-bed river: Moving versus stationary boat conditions. Journal of Hydraulic Engineering, 137(9), 1064–1071. doi:10.1061/(ASCE)HY.1943-7900.0000373
  • Jamieson, E., Rennie, C. D., & Ramooz, R. (2008). Verification of in-situ ADCP bedload transport measurements using digital video analysis. River Flow 2008, IHAR.
  • Jothilakshmi, S., & Gudivada, V. N. (2016). Chapter 10 – large scale data enabled evolution of spoken language research and applications. I Handbook of Statistics, redigert av Venkat N. Gudivada, Venkat N. Raghavan and C.R. Rao, Venu Govindaraju, 301–340. Elsevier. doi:10.1016/bs.host.2016.07.005.
  • Le Guern, J., Rodrigues, S., Geay, T., Zanker, S., Hauet, A., Tassi, P., Claude, N., Jugé, P., Duperray, A., & Vervynck, L. (2021). Relevance of acoustic methods to quantify bedload transport and bedform dynamics in a large sandy-gravel-bed river. Earth Surface Dynamics, 9(3), 423–444. doi:10.5194/esurf-9-423-2021
  • Leary, K., & Buscombe, D. (2020). Estimating sand bed load in rivers by tracking dunes: a comparison of methods based on bed elevation time series. Earth Surface Dynamics, 8(1), 161–172. doi:10.5194/esurf-8-161-2020
  • Lee Gordon, R., & Instruments, R. D. (1996). Acoustic doppler current profiler principles of operation a practical primer. San Diego, CA: RD Instruments.
  • Lilly, J. M. (2017). Element analysis: a wavelet-based method for analysing time-localized events in noisy time series. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2200). doi:10.1098/rspa.2016.0776
  • Medwin, H. (2005). Sounds in the sea: From ocean acoustics to acoustical oceanography. Cambridge University Press.
  • Medwin, H., & Clay, C. S. (1998). Fundamentals of acoustical oceanography. Academic Press.
  • Moate, B. D., & Thorne, P. D. (2009). Measurements and inversion of acoustic scattering from suspensions having broad size distributions. The Journal of the Acoustical Society of America, 126(6), 2905–2917. doi:10.1121/1.3242374
  • Moore, S. A., Dramais, G., Dussouillez, P., Le Coz, J., Rennie, C., & Camenen, B. (2013). Acoustic measurements of the spatial distribution of suspended sediment at a site on the Lower Mekong River. Proceedings of Meetings on Acoustics, 19, 005003. doi:10.1121/1.4799128
  • Moore, S. A., Le Coz, J., Hurther, D., & Paquier, A. (2012). On the application of horizontal ADCPs to suspended sediment transport surveys in rivers. Continental Shelf Research, 46, 50–63. doi:10.1016/j.csr.2011.10.013
  • Muste, M., Baranya, S., Tsubaki, R., Kim, D., Ho, H., Tsai, H., & Law, D. (2016). Acoustic mapping velocimetry. Water Resources Research, 52(5), 4132–4150. doi:10.1002/2015WR018354
  • Nezu, I., & Nakagawa, H. (1993). Turbulence in open channel flows. IAHR monograph. A. A. Balkema.
  • Parker, G. (2004). ID sediment transport morphodynamics with applications to rivers and turbidity currents. St. Anthony Falls Laboratory, Mississippi River at 3rd Avenue SE.
  • RDInstruments. (2011). Acoustic doppler current profiler principles of operation a practical primer. Practical Primer, Teledyne RD Instruments, 14020 Stowe Drive Poway, California 92064. http://www.teledynemarine.com.
  • RDInstruments, Teledyne. (2015). StreamPro ADCP Guide. Teledyne RDInstruments. http://www.teledynemarine.com/Documents/Brand%20Support/RD%20INSTRUMENTS/Technical%20Resources/Manuals%20and%20Guides/StreamPro/StreamPro_ADCP_Guide_Sep15.pdf.
  • Rennie, C. D., & Church, M. (2010). Mapping spatial distributions and uncertainty of water and sediment. Journal of Geophysical Research-Earth Surface, 115, F03035. doi:10.1029/2009JF001556, 2010
  • Rennie, C. D., & Millar, R. (2007). Deconvolution technique to separate signal from noise in gravel bedload velocity data. Journal of Hydraulic Engineering-Asce, 8(8), 845–856. doi:10.1061/(ASCE)0733-9429(2007)133:8(845)
  • Rennie, C. D., Millar, R. G., & Church, M. A. (2002). Measurement of bed load velocity using an acoustic doppler current profiler. Journal of Hydraulic Engineering, 128(5), 473–483. doi:10.1061/(ASCE)0733-9429(2002)128:5(473)
  • Rennie, C. D., Vericat, D., Williams, R. D., Brasington, J., & Hicks, M. (2017). Calibration of acoustic doppler current profiler apparent bedload velocity to bedload transport rate. Kap. 8 i Gravel-Bed Rivers: Process and Disasters, 209–231. Wiley-Blackwell.
  • Rennie, C. D., & Villard, P. V. (2004). Site specificity of bed load measurement using an acoustic Doppler current profiler. Journal of Geophysical Research: Earth Surface, 109. doi:10.1029/2003JF000106
  • Rickenmann, D., Turowski, J. M., Fritschi, B., Klaiber, A., & Ludwig, A. (2012). Bedload transport measurements at the Erlenbach stream with geophones and automated basket samplers. Earth Surface Processes and Landforms, 37(9), 1000–1011. doi:10.1002/esp.3225
  • Rickenmann, D., Turowski, J. M., Fritschi, B., Wyss, C., Laronne, J., Barzilai, R., Reid, I. (2014). Bedload transport measurements with impact plate geophones: comparison of sensor calibration in different gravel-bed streams. Earth Surface Processes and Landforms, 39, 928–942. doi:10.1002/esp.3499
  • Roth, D., Brodsky, E., Finnegan, N., Rickenmann, D., Turowski, J., & Badoux, A. (2016). Bed load sediment transport inferred from seismic signals near a river. Journal of Geophysical Research: Earth Surface, 121(4), 725–747. doi:10.1002/2015JF003782
  • Shields, D. F. Jr. (2010). Aquatic habitat bottom classification using ADCP. Journal of Hydraulic Engineering, 136, 336–342. doi:10.1061/(ASCE)HY.1943-7900.0000181
  • Simons, D. B., Richardson, E. V., & Nordin, C. F. (1965). Bedload equation for ripples and dunes. US Government Printing Office.
  • Sontek. (2017). RiverSurveyor S5/M9 system manual, firmware version 4.02. 9940 Summers Ridge Road, San Diego, CA 92121-3091 USA: SonTek, a Xylem brand. http://ysi.actonsoftware.com/acton/attachment/1253/f-041f/1/-/-/-/-/RiverSurveyor%20Live%20Manual%20v4.0_R.pdf.
  • Szupiany, R. N., Weibel, C. L., Guerrero, M., Latosinski, F., Wood, M., Ruben, L. D., & Oberg, K. (2019). Estimating sand concentrations using ADCP-based acoustic inversion in a large fluvial system characterized by bi-modal suspended-sediment distributions. Earth Surface Processes and Landforms, 44(6), 1295–1308. doi:10.1002/esp.4572
  • Thorne, P. D., & Hurther, D. (2014). An overview on the use of backscattered sound for measuring suspended particle size and concentration profiles in non-cohesive inorganic sediment transport studies. Continental Shelf Research, 73, 97–118. doi:10.1016/j.csr.2013.10.017
  • Urick, R. J. (1983). Principles of underwater sound. Peninsula Publishing. https://books.google.no/books?id=MBBgQgAACAAJ.
  • Van Rijn, L. (1984). Sediment transport, part i: Bed load transport. Journal of Hydraulic Engineering, 110(10), 1431–1456. doi:10.1061/(ASCE)0733-9429(1984)110:10(1431)
  • Vries, D. (1979). Information on the Arnhem Sampler (BTMA). Internal Report No. 3-79, Delöft University of Technology,, Delöft : Delöft University of Technology.
  • Wilcock, P., Pitlick, J., & Cui, Y. (2009). Sediment transport primer – Estimating bed-material transport in gravel-bed rivers. Rocky Mountain Research Station, U.S. Department of Agriculture, Forest Service, Gen. Tech. Rep. RMRS-GTR-226. Fort Collins, CO.