24
Views
0
CrossRef citations to date
0
Altmetric
Research paper

A finite volume model for maintaining stationarity and reducing spurious oscillations in simulations of sewer system filling and emptying

, &
Pages 267-282 | Received 20 Feb 2024, Accepted 05 Apr 2024, Published online: 17 Jun 2024

References

  • Adams, T., Grant, C., & Watson, H. (2012). A simple algorithm to relate measured surface roughness to equivalent sand-grain roughness. International Journal of Mechanical Engineering and Mechatronics, 1(2), 66–71.
  • An, H., Lee, S., Noh, S. J., Kim, Y., & Noh, J. (2018). Hybrid numerical scheme of Preissmann slot model for transient mixed flows. Water, 10(7), 899. https://doi.org/10.3390/w10070899
  • Aureli, F., Dazzi, S., Maranzoni, A., & Mignosa, P. (2015). Validation of single- and two-equation models for transient mixed flows: A laboratory test case. Journal of Hydraulic Research, 53(4), 440–451. https://doi.org/10.1080/00221686.2015.1038324
  • Boroomand, M. R., & Mohammadi, A. (2019). Investigation of k-ε turbulent models and their effects on offset jet flow simulation. Civil Engineering Journal, 5(1), 127. https://doi.org/10.28991/cej-2019-03091231
  • Bourdarias, C., & Gerbi, S. (2007). A finite volume scheme for a model coupling free surface and pressurised flows in pipes. Journal of Computational and Applied Mathematics, 209, 109–131. https://doi.org/10.1016/j.cam.2006.10.086
  • Capart, H., Eldho, T. I., Huang, S. Y., D. L. Young, & Zech, Y. (2003). Treatment of natural geometry in finite volume river flow computations. Journal of Hydraulic Engineering, 129(5), 385–393. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:5(385)
  • Capart, H., Sillen, X., & Zech, Y. (1997). Numerical and experimental water transients in sewer pipes. Journal of Hydraulic Research, 35, 659–672. https://doi.org/10.1080/00221689709498400
  • Cunge, J. A., Holly, F. M., & Verwey, A. (1980). Practical aspects of computational river hydraulics. Pitman Publ. Inc.
  • Cunge, J. A., & Wegner, M. (1964). Numerical integration of barré de saint-venant's flow equations by means of an implicite scheme of finite differences. applicants in the case of alternately free and pressurised flow in a tunnel. La Houille Blanche, 50(1), 33–39. https://doi.org/10.1051/lhb/1964002
  • Direct, C. (2017). Openfoam 5.0. The OpenFOAM Foundation Ltd.
  • Franzini, F., & Soares-Frazão, S. (2016). Efficiency and accuracy of lateralized hll, hlls and augmented roe's scheme with energy balance for river flows in irregular channels. Applied Mathematical Modelling, 40(17), 7427–7446. https://doi.org/10.1016/j.apm.2016.02.007
  • Guinot, V. (2000). Riemann solvers for water hammer simulations by godunov method. International Journal for Numerical Methods in Engineering, 49(7), 851–870. https://doi.org/10.1002/1097-0207(20001110)49:71.0.CO;2-S
  • Harten, A., Lax, P. D., & Leer, B. V. (1983). On upstream differencing and godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1), 35–61. https://doi.org/10.1137/1025002
  • Hodges, B. R. (2020). An artificial compressibility method for 1D simulation of open-channel and pressurized-pipe flow. Water, 12(6), 1727. https://doi.org/10.3390/w12061727
  • Issa, R. I. (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40–65. https://doi.org/10.1016/0021-9991(86)90099-9
  • Jasak, H., Jemcov, A., & Tukovic, Z. (2007). Openfoam: A C++ library for complex physics simulations. In International Workshop on Coupled Methods in Numerical Dynamics (Vol. 1000, pp. 1–20). Inter-University Centre Dubrovnik.
  • Kerger, F., Archambeau, P., Erpicum, S., Dewals, B. J., & Pirotton, M. (2011). A fast universal solver for 1d continuous and discontinuous steady flows in rivers and pipes. International Journal for Numerical Methods in Fluids, 66(1), 38–48. https://doi.org/10.1002/fld.v66.1
  • Khani, D., Lim, Y. H., & Malekpour, A. (2021). A mixed flow analysis of sewer pipes with different shapes using a non-oscillatory two-component pressure approach (tpa). Modelling, 2(4), 467–481. https://doi.org/10.3390/modelling2040025
  • Kramer, M., & Chanson, H. (2018, May). Free-surface instabilities in high-velocity air-water flows down stepped chutes. In Proc., 7th IAHR International Symposium on Hydraulic Structures (pp. 15–18). International Association for Hydro-Environment Engineering and Research.
  • Leon, A. S., Elayeb, I. S., & Tang, Y. (2019). An experimental study on violent geysers in vertical pipes. Journal of Hydraulic Research, 57(3), 283–294. https://doi.org/10.1080/00221686.2018.1494052
  • Leon, A. S., Ghidaoui, M. S., Schmidt, A. R., & García, M. H. (2006). Godunov-type solutions for transient flows in sewers. Journal of Hydraulic Engineering, 132(8), 800–813. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:8(800)
  • Leon, A. S., Ghidaoui, M. S., Schmidt, A. R., & Garcia, M. H. (2009). Application of godunov-type schemes to transient mixed flows. Journal of Hydraulic Research, 47(2), 147–156. https://doi.org/10.3826/jhr.2009.3157
  • Leon, A. S., Ghidaoui, M. S., Schmidt, A. R., & Garcia, M. H. (2010). A robust two-equation model for transient-mixed flows. Journal of Hydraulic Research, 48(1), 44–56. https://doi.org/10.1080/00221680903565911
  • LeVeque, R. J., Finite volume methods for hyperbolic problems, Cambridge texts in applied mathematics. Cambridge University Press, 2002.
  • Macpherson, G. B., Nordin, N., & Weller, H. G. (2009). Particle tracking in unstructured, arbitrary polyhedral meshes for use in cfd and molecular dynamics. Communications in Numerical Methods in Engineering, 25(3), 263–273. https://doi.org/10.1002/cnm.v25:3
  • Malekpour, A., & Karney, B. W. (2016). Spurious numerical oscillations in the preissmann slot method: Origin and suppression. Journal of Hydraulic Engineering, 142(3), Article 04015060. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001106
  • Mao, Z., Guan, G., & Yang, Z. (2020). Suppress numerical oscillations in transient mixed flow simulations with a modified hll solver. Water, 12(5), 1245. https://doi.org/10.3390/w12051245
  • Matveev, K. I. (2020). Numerical simulation of air cavity under a simplified model-scale hull form. Journal of Ocean Engineering and Science, 5(1), 68–72. https://doi.org/10.1016/j.joes.2019.08.003
  • Mandair, S., Magnan, R., Morissette, J.-F., & Karney, B. (2020). Energy-based evaluation of 1D unsteady friction models for classic laminar water hammer with comparison to CFD. Journal of Hydraulic Engineering, 146(3), Article 04019072. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001697
  • Moody, L. F. (1947). An approximate formula for pipe friction factors. Transactions of ASME, 69(12), 1005–1011.
  • Murillo, J., & García-Navarro, P. (2012). Augmented versions of the hll and hllc riemann solvers including source terms in one and two dimensions for shallow flow applications. Journal of Computational Physics, 231(20), 6861–6906. https://doi.org/10.1016/j.jcp.2012.06.031
  • Sanders, B. F., & Bradford, S. F. (2011). Network implementation of the two-component pressure approach for transient flow in storm sewers. Journal of Hydraulic Engineering, 137(2), 158–172. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000293
  • Toro, E. F. (2001). Shock-Capturing methods for free- surface shallow flows. Wiley and Sons Ltd.
  • Tosan, I., Perez-Pulido, R.-Y., Rokhzadi, A., & Fuamba, M. (2022). Additional friction factor optimized for modeling transient flows following air-pocket entrapment in stormwater systems. Journal of Irrigation and Drainage Engineering, 148(2), Article 04021068. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001642
  • USBR (1997). Water measurement manual. U. S. Department of the Interior, Bureau of Reclamation (USBR), U.S. Government Printing Office, 20402.
  • Vasconcelos, J. G., Wright, S. J., & Roe, P. L. (2006). Improved simulation of flow regime transition in sewers: Two-component pressure approach. Journal of Hydraulic Engineering, 132(6), 553–562. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:6(553)
  • Vasconcelos, J. G., Wright, S. J., & Roe, P. L. (2009). Numerical oscillations in pipe-filling bore predictions by shock-capturing models. Journal of Hydraulic Engineering, 135(4), 296–305. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:4(296)
  • Weller, H., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object orientated techniques. Computers in Physics, 12, 620–631. https://doi.org/10.1063/1.168744
  • Zhou, L., Alain, E., & Karney, B. (2019). Unsteady friction in a rapid filling pipeline with trapped air. In Proc., 38th IAHR World Congress (09, pp. 3386–3393). International Association for Hydro-Environment Engineering and Research.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.