390
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Assembly of Polypyrrole-Graphene Oxide Hydrogel Nanocomposites and Their Swelling Properties

, , , , , & show all
Pages 1122-1131 | Received 02 Sep 2013, Published online: 21 Aug 2015

References

  • Lee, K.; Cho, S.; Park, S. H.; Heeger, A. J.; Lee, C. W.; Lee, S. H. Metallic transport in polyaniline. Nature 2006, 441, 65.
  • Huang, J.; Virji, S.; Weiler, B. H.; Kaner, R. B. Polyaniline nanofibers: facile synthesis and chemical sensors. J. Am. Chem. Soc. 2003, 125, 314.
  • Ramakrishnan, R.; Sudha, J. D.; Reena, V. L. Nanostructured polyaniline-polytitanate-clay composite for photocatalytic applications: preparation and properties. RSC Adv. 2012, 2, 6228.
  • Ozkazanc, E.; Zor, S.; Ozkazanc, H. Synthesis, characterization, and AC conductivity of polyaniline/selenium composites. J. Macromol. Sci., Part B, Phys. 2012, 51, 2122.
  • Rivers, T. J.; Hudson, T. W.; Schmidt, C. E. Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv. Funct. Mater. 2002, 12, 33.
  • Siddhanta, S. K.; Gangopadhyay, R. Conducting polymer gel: formation of a novel semi-IPN from polyaniline and crosslinked poly (2-acrylamido-2-methyl propanesulphonicacid). Polymer 2005, 46, 2993.
  • Wei, D.; Lin, X.; Li, L.; Shang, S.; Yuen, M. C.; Yan, G.; Yu, X. Controlled growth of polypyrrole hydrogels. Soft Matter 2013, 9, 2832.
  • Pepin-Donat, B.; Viallat, A.; Blachot, J. F.; Lombart, C. Electromechanical polymer gels combining rubber elasticity with electronic conduction. Adv. Mater. 2006, 18, 1401.
  • Tang, Q.; Wu, J.; Lin, J. Superabsorbent conducting hydrogel from poly(acrylamide-aniline) with thermo-sensitivity and release properties. Carbohydr. Polym. 2008, 73, 315.
  • Tsai, T. S.; Pillay, V.; Choonara, Y. E.; du Toit, L. C.; Modi, G.; Naidoo, D.; Kumar, P. A polyvinyl alcohol-polyaniline based electro-conductive hydrogel for controlled stimuli-actuable release of indomethacin. Polymer 2011, 3, 150.
  • Dai, T.; Jiang, X.; Hua, S.; Wang, X.; Lu, Y. Facile fabrication of conducting polymer hydrogels via supramolecular self-assembly. Chem. Commun. 2008, 36, 4279.
  • Chen, L.; Kim, B.; Nishino, M.; Gong, J. P.; Osada, Y. Environmental responses of polythiophene hydrogel. Macromolecules 2000, 33, 1232.
  • Guo, B.; Finne-Wistrand, A.; Albertsson, A. C. Degradable and electroactive hydrogels with tunable electrical conductivity and swelling behavior. Chem. Mater. 2011, 23, 1254.
  • Xu, Y. Z.; Sui, Z. Y.; Xu, B.; Duan, H.; Zhang, X. T. Emulsion template synthesis of all conducting polymer aerogels with superb adsorption capacity and enhanced electrochemical capacitance. J. Mater. Chem. 2012, 22, 8579.
  • Du, R.; Xu, Y.; Luo, Y.; Zhang, X.; Zhang, J. Synthesis of conducting polymer hydrogels with 2D building blocks and their potential-dependent gel–sol transition. Chem. Commun. 2011, 47, 6287.
  • Xiao, Y.; He, L.; Che, J. An effective approach for the fabrication of reinforced composite hydrogel engineered with SWNTs, polypyrrole and PEGDA hydrogel. J. Mater. Chem. 2012, 22, 8076.
  • Pan, L. J.; Yu, G. H.; Zhai, D. Y.; Lee, H. R.; Zhao, W. T.; Liu, N.; Wang, H. L.; Tee, B. C. K.; Shi, Y.; Cui, Y.; Bao, Z. N. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287.
  • Irvin, D. J.; Goods, S. H.; Whinnery, L. L. Direct measurement of extension and force in conductive polymer gel actuators. Chem. Mater. 2001, 13, 1143.
  • Asberg, P.; Inganas, O. Hydrogels of a conducting conjugated polymer as 3-D enzyme electrode. Biosens. Bioelectron. 2003, 19, 199.
  • Mawad, D.; Stewart, E.; Officer, D. L.; Romeo, T.; Wagner, P.; Wagner, K.; Wallace, G. G. A single component conducting polymer hydrogel as a scaffold for tissue engineering. Adv. Funct. Mater. 2012, 22, 2692.
  • Bohidar, H. B.; Dubin, P.; Osada, Y. Polymer Gels: Fundamentals and Applications; American Chemical Society: Washington, DC, 2002.
  • Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953.
  • Liang, J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Guo, T.; Chen, Y. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater. 2009, 19, 2297.
  • Sengupta, R.; Bhattacharya, M.; Bandyopadhyay, S.; Bhowmick, A. K. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 2011, 36, 638.
  • Pan, B. L.; Zhao, J.; Zhang, Y. Q.; Zhang, Y. Z. Wear performance and mechanisms of polyphenylene sulfide/polytetrafluoroethylene wax composite coatings reinforced by graphene. J. Macromol. Sci., Part B, Phys. 2012, 51, 1218.
  • Yang, X.; Tu, Y.; Li, L.; Shang, S.; Tao, X. M. Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl. Mater. Interfaces 2010, 2, 1707.
  • Lee, H. B.; Raghu, A. V.; Yoon, K. S.; Jeong, H. M. preparation and characterization of poly(ethylene oxide)/graphene nanocomposites from an aqueous medium. J. Macromol. Sci., Part B, Phys. 2010, 49, 802.
  • Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457.
  • Lo, C. W.; Zhu, D.; Jiang, H. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter 2011, 7, 5604.
  • Sun, S.; Wu, P. A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J. Mater. Chem. 2011, 21, 4095.
  • Xu, Y.; Wu, Q.; Sun, Y.; Bai, H.; Shi, G. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 2010, 4, 7358.
  • Alzari, V.; Mariani, A.; Monticelli, O.; Valentini, L.; Nuvoli, D.; Piccinini, M.; Scognamillo, S.; Bon, S. B.; Illescas, J. Stimuli-responsive polymer hydrogels containing partially exfoliated graphite. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 5375.
  • Li, Z.; Shen, J.; Ma, H.; Lu, X.; Shi, M.; Li, N.; Ye, M. Preparation and characterization of pH- and temperature-responsive hydrogels with surface-functionalized graphene oxide as the crosslinker. Soft Matter 2012, 8, 3139.
  • Feng, H.; Li, Y.; Li, J. Strong reduced graphene oxide-polymer composites: hydrogels and wires. RSC Adv. 2012, 2, 6988.
  • Zhou, H.; Yao, W.; Li, G.; Wang, J.; Lu, Y. Graphene/poly(3,4-ethylenedioxythiophene) hydrogel with excellent mechanical performance and high conductivity. Carbon 2013, 59, 495.
  • Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
  • Hunter, R. J. Foundations of Colloid Science; Oxford University Press: New York, 1987.
  • Dai, T.; Lu, Y. Water-soluble methyl orange fibrils as versatile templates for the fabrication of conducting polymer microtubules. Macromol. Rapid Commun. 2007, 28, 629.
  • Yang, X.; Li, L.; Zhao, Y. Ag/AgCl-decorated polypyrrole nanotubes and their sensory properties. Synth. Met. 2010, 160, 1822.
  • Jeong, H. K.; Jin, M. H.; An, K. H.; Lee, Y. H. Structural stability and variable dielectric constant in poly sodium 4-styrensulfonate intercalated graphite oxide. J. Phys. Chem. C 2009, 113, 13060.
  • Lee, W. F.; Wu, R. J. Superabsorbent polymeric materials. II. swelling behavior of crosslinked poly[sodium acrylate-co-3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate] in aqueous salt solution. J. Appl. Polym. Sci. 1997, 64, 1701.
  • Li, M. Y.; Guo, Y.; Wei, Y.; MacDiarmid, A. G.; Lelkes, P. I. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials, 2006, 27, 2705.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.