222
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Computational-Based Approach for Predicting Porosity of Electrospun Nanofiber Mats Using Response Surface Methodology and Artificial Neural Network Methods

, , &
Pages 1404-1425 | Accepted 29 Jul 2015, Published online: 09 Oct 2015

References

  • Dotti, F.; Varesano, A.; Montarsolo, A.; Aluigi, A.; Tonin, C.; Mazzuchetti, G. Electrospun porous mats for high efficiency filtration. J. Ind. Text. 2007, 37, 151–162.
  • Lu, Y.; Jiang, H.; Tu, K.; Wang, L. Mild immobilization of diverse macromolecular bioactive agents onto multifunctional fibrous membranes prepared by coaxial electrospinning. Acta Biomater. 2009, 5, 1562–1574.
  • Lu, H.; Chen, W.; Xing, Y.; Ying, D.; Jiang, B. Design and preparation of an electrospun biomaterial surgical patch. J. Bioact. Compat. Pol. 2009, 24, 158–168.
  • Nisbet, D. R.; Forsythe, J. S.; Shen, W.; Finkelstein, D. I.; Horne, M. K. Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering. J. Biomater. Appl. 2009, 24, 7–29.
  • Ma, Z.; Kotaki, M.; Inai, R.; Ramakrishna, S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 2005, 11, 101–109.
  • Hong, K. H. Preparation and properties of electrospun poly (vinyl alcohol)/silver fiber web as wound dressings.Polym. Eng. Sci. 2007, 47, 43–49.
  • Zhang, W.; Pintauro, P. N. High-performance nanofiber fuel cell electrodes. Chem. Sus. Chem. 2011, 4, 1753–1757.
  • Lee, S.; Obendorf, S. K. Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Text. Res. J. 2007, 77, 696–702.
  • Shams Nateri, A.; and Hasanzadeh, M. Using fuzzy-logic and neural network techniques to evaluating polyacrylonitrile nanofiber diameter. J. Comput. Theor. Nanosci. 2009, 6, 1542–1545.
  • Ziabari, M.; Mottaghitalab, V.; Haghi, A. K. A new approach for optimization of electrospun nanofiber formation process. Korean J. Chem. Eng. 2010, 27, 340–354.
  • Nasouri, K.; Shoushtari, A. M.; Kaflou, A. Investigation of polyacrylonitrile electrospun nanofibres morphology as a function of polymer concentration, viscosity and Berry number. Micro Nano Lett. 2012, 7, 423–426.
  • Sabetzadeh, N.; Bahrambeygi, H.; Rabbi, A.; Nasouri, K. Thermal conductivity of polyacrylonitrile nanofibre web in various nanofibre diameters and surface densities. Micro Nano Lett. 2012, 7, 662–666.
  • Yarin, L.; Koombhongse, S.; Reneker, D. H. Bending instability in electrospinning of nanofibers. J. Appl. Phys. 2001, 90, 3018–3026.
  • Doshi, J.; and Reneker, D. H. Electrospinning process and applications of electrospun fibers. J. Electrostat. 1995, 35, 151–160.
  • Theron, S. A.; Zussman, E.; Yarin, A. L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 2004, 45, 2017–2030.
  • Zhong, W.; Liu, S.; Chen, X.; Wang, Y.; Yang, W. High-yield synthesis of superhydrophilic polypyrrole nanowire networks. Macromolecules 2006, 39, 3224–3230.
  • Kilic, A.; Oruc, F.; Demir, A. Effects of polarity on electrospinning process. Text. Res. J. 2008, 78, 532–539.
  • Reneker, D. H.; Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7, 216–223.
  • Zhang, S.; Shim, W. S.; Kim, J. Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency. Mater. Design. 2009, 30, 3659–3666.
  • Yördem, O. S.; Papila, M.; Menceloğlu, Y. Z. Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology. Mater. Design. 2008, 29, 34–44.
  • Myers, R. H.; Montgomery, D. C.; Anderson-cook, C. M. Response Surface Methodology: Process and Product Optimization using Designed Experiments, 3rd ed.; John Wiley and Sons: New York, 2009.
  • Gu, S. Y.; Ren, J.; Vancso, G. J. Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. Eur. Polym. J. 2005, 41, 2559–2568.
  • Nasouri, K.; Bahrambeygi, H.; Rabbi, A.; Shoushtari, A. M.; Kaflou, A. Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. J. Appl. Polym. Sci. 2012, 126, 127–135.
  • Karim, S. A.; Sulong, A. B.; Azhari, C. H.; Lee, T. H.; Hwei, N. M. Optimization of electrospinning parameters using response surface methods to enhance fiber diameter. Mechanical properties and orientation of nanofibers. J. Appl. Sci. Res. 2012, 8, 2510–2517.
  • Naderi, N.; Agend, F.; Faridi-Majidi, R.; Sharifi-Sanjan, N.; Madani, M. Prediction of nanofiber diameter and optimization of electrospinning process via response surface methodology. J. Nanosci. Nanotech. 2008, 8, 2509–2515.
  • Park, J. Y.; Shim, W. G.; Lee, I. H. Modeling and optimization of electrospun polyvinylacetate (PVAc) nanofibers by response surface methodology (RSM). J. Nanosci. Nanotech. 2011, 11, 1359–1363.
  • Jacobs, V.; Patanaik, A.; Anandjiwala, R. D.; Maaza, M. Optimization of electrospinning parameters for chitosan nanofibres. Curr. Nanosci. 2011, 7, 396–401.
  • Dev, V. R. G.; Venugopal, J. R.; Senthilkumar, M.; Gupta, D.; Ramakrishna, S. Prediction of water retention capacity of hydrolysed electrospun polyacrylonitrile fibers using statistical model and artificial neural network. J. Appl. Polym. Sci. 2009, 113, 3397–3404.
  • Galushkin, A. L. Neural Networks Theory; Springer, Moscow Institute of Physics & Technology; Department Neurocomputers Institutskiy, 2007.
  • Khanlou, H. M.; Sadollah, A.; Ang, B. C.; Kim, J. H.; Talebian, S.; Ghadimi, A. Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks. Neural Comput. Appl. 2014, 1, 767–777.
  • Subbiah, T.; Bhat, G.; Tock, R.; Parameswaran, S.; Ramkumar, S. Electrospinning of Nanofibers. J. Appl. Polym. Sci. 2005, 96, 557–569.
  • Hadavi Moghadam, B.; and Hasanzadeh, M. Predicting contact angle of electrospun polyacrylonitrile nanofiber mat by artificial neural networks and statistical techniques. Adv. Polym. Technol. 2013, 32, 956–964.
  • Pourdeyhimi, B.; Dent, R.; and Davis, H. Measuring fiber orientation in nonwovens - Part III: Fourier transform. Textile Res. J. 1997, 67, 143–151.
  • Gonzalez, R. C.; and Woods, R. E. Digital Image Processing, 3rd ed.; Prentice Hall, New York, 2008.
  • Ziabari, M.; Mottaghitalab, V.; Haghi, A. K. Evaluation of electrospun nanofiber pore structure parameters. Korean J. Chem. Eng. 2008, 25, 923–932.
  • Chattopadhyay, R.; Guha, A. Artificial neural networks: Applications to textiles text. Prog. 2004, 35, 1–46.
  • Kasiri, M. B.; Aleboyeh, H.; Aleboyeh, A. Modeling and optimization of heterogeneous photo-fenton process with response surface methodology and artificial neural networks. Environ. Sci. Technol. 2008, 42, 7970–7975.
  • Zhang, C.; Yuan, X.; Wu, L.; Han, Y.; Sheng, J. Study on morphology of electrospun poly (vinyl alcohol) mats. Eur. Polym. J. 2005, 41, 423–432.
  • Haghi, A. K.; and Akbari, M. Trends in electrospinning of natural nanofibers. Phys. Status Solidi A. 2007, 204, 1830–1834.
  • Huang, F. L.; Wang, Q. Q.; Wei, Q. F.; Gao, W. D.; Shou, H. Y.; Jiang, S. D. Dynamic wettability and contact angles of poly (vinylidene fluoride) nanofiber membranes grafted with acrylic acid. XPRESS Polym. Lett. 2010, 4, 551–558.
  • Khodadoust, S.; Hadjmohammadi, M. Determination of N-methylcarbamate insecticides in water samples using dispersive liquid–liquid microextraction and HPLC with the aid of experimental design and desirability function. Anal. Chim. Acta 2011, 699, 113–119.
  • Ribeiro, J. S.; Teófilo, R. F.; Augusto, F.; Ferreira, M. M. C. Simultaneous optimization of the microextraction of coffee volatiles using response surface methodology and principal component analysis. Chemometr. Intell. Lab. 2010, 102, 45–52.
  • Vieira, G. S.; Pereira, L. M.; Hubinger, M. D. Optimisation of osmotic dehydration process of guavas by response surface methodology and desirability function. Int. J. Food Sci. Tech. 2012, 47, 132–140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.