85
Views
3
CrossRef citations to date
0
Altmetric
Articles

On the Effects of UV Radiation on the Release Ability of Glucose Embedded in Hydroxypropyl Cellulose Films

, , &
Pages 575-590 | Received 08 Jan 2014, Accepted 29 Mar 2016, Published online: 20 Apr 2016

References

  • Xi, H.; Yang, L.; Chen, J. Synthesis and characterization of pH- and temperature-sensitive hydrogels of poly (styrene-alt-maleic anhydride)-co-pluronic for drug release. J. Macromol. Sci. Part B, Phys. 2013, 52, 1198–1211.
  • Nechifor, C. D.; Zelinschi, C.-B.; Stoica, I.; Closca, V.; Dorohoi, D. O. Spectral studies of Donepezil release from stretched PVA polymer films original research. J. Molec. Struct. 2013, 1044, 262–267.
  • Andreopoulos, A. G.; Tarantili, P. A. Study of biopolymers as carriers for controlled release. J. Macromol. Sci. Part B, Phys. 2002, 41, 559–578.
  • Sumathi, S.; Ray, A. R. Release behaviour of drugs from Tamarind seed polysaccharide tablets. J. Pharm. Pharm. Sci. 2002, 5, 12–18.
  • Narasimhan, B.; Peppas, N. Molecular analysis of drug delivery systems controlled by dissolution of the polymer carrier. J. Pharm. Sci. 1997, 86, 297–304.
  • Lin, S. Y.; Li, M. J.; Lin, K. H. Hydrophilic excipients modulate the time lag of time-controlled disintegrating press-coated tablets. AAPS Pharm. Sci. Tech. 2004, 5, 25–29.
  • Cosutchi, A. I.; Hulubei, C.; Stoica, I.; Ioan, S. Morphological and structural–rheological relationship in epiclon-based polyimide/hydroxypropylcellulose blend systems. J. Polym. Res. 2010, 17, 541–550.
  • Cosutchi, A. I.; Hulubei, C.; Stoica, I.; Ioan, S. A new approach for patterning epiclon-based polyimide precursor films using a lyotropic liquid crystal template. J. Polym. Res. 2011, 18, 2389–2402.
  • Ishikawa, T.; Mukai, B.; Shiraishi, S.; Utoguchi, N.; Fuji, M.; Matsumota, M.; Watanabe Y. Preparation of rapidly disintegrating tablet using new types of microcrystalline cellulose (PH-M Series) and low substituted-hydroxypropylcellulose or spherical sugar granules by direct compression method. Chem. Pharm. Bull. 2001, 49, 134–139.
  • Dobos, A. M.; Onofrei, M. D.; Stoica, I.; Olaru, N.; Olaru, L.; Ioan, S. Rheological properties and microstructures of cellulose acetate phthalate/hydroxypropyl cellulose blends. Polym. Compos. 2012, 33, 2072–2083.
  • Bhadani, S. N.; Gray D. G. Cellulose-based liquid crystalline polymers: Esters of (Hydroxypropyl) cellulose. J. Macromol. Sci. Part B: Phys. 1983, 99, 29–38.
  • Razzaq, H. A.; Sutton, K. H.; Motoi, L. Modifying glucoserelease from high carbohydrate foods with natural polymers extracted from cereals. J. Sci Food Agric. 2011, 91, 2621–2627.
  • Liu, G.; Ma, R.; Ren, J.; Li, Z.; Zhang, H.; Zhang, Z.; Ana, Y.; Shi, L. A glucose- responsive complex polymeric micelle enabling repeated on–off release and insulin protection. Soft Matter. 2013, 9, 1636–1644.
  • Brown, L. R.; Edelman, E. R.; Fischel-Ghodsian, F.; Langer, R. Characterization of glucose-mediated insulin release from implantable polymers. J. Pharm Sci. 1996, 85, 1341–1345.
  • Masuko, T.; Minami, A.; Iwasakib, N.; Majima, T.; Nishimura, S. I.; Lee, Y. C. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72.
  • Gao, J.; Haidar, G.; Lu, X.; Hu, Z. Self-association of hydroxypropylcellulose in water. Macromolesules 2001, 34, 2242–2247.
  • Mandru, M.; Vlad, S.; Ciobanu, C.; Lebrun, L.; Popa, M. Polyurethane-hydroxypropyl cellulose membranes for sustained release of nistatin. Cell. Chem. Technol. 2013, 47, 5–12.
  • Bumbu, G. G.; Vasile, C.; Popescu, M. C.; Darie, H.; Chitanu, G. C.; Singurel, Gh.; Carpov, A. Compatibility of polysaccharide/maleic copolymer blends. IV. Thermal behavior of hydroxypropyl cellulose-containing blends. J. Appl. Polym. Sci. 2003, 88, 2585–2597.
  • Bajwa, G. S.; Sammon, C.; Timmins, P.; Melia, C. D. Molecular and mechanical properties of hydroxypropyl methylcellulose solutions during the sol:gel transition. Polymer 2009, 50, 4571–4576.
  • van Oss, C. J. Interfacial forces in aqueous media; Marcel Dekker Inc: New York, 1994.
  • Kaelble, D. H. Dispersion-polar surface tension properties of organic solids. J. Adhes. 1970, 2, 66–81.
  • Jasper, J. J. The surface tension of pure liquid compounds. J. Phys. Chem. Ref. Data. 1972, 1, 841–1009.
  • Şakar-Deliormanli, A. Effect of cationic polyelectrolyte on the flow behavior of hydroxypropyl methyl cellulose/polyacrylic acid interpolymer complexes. J. Macromol. Sci. Part B, Phys. 2013, 52, 1531–1544.
  • Faibish, R. S.; Yoshida, W.; Cohen, Y. Contact angle study on polymer-grafted silicon wafers. J. Colloid Interf. Sci. 2002, 256, 341–350.
  • Barbu, A.; Bratu, I. Structural investigations of UV-irradiated packaging polymeric foils. J. Mol. Struct. 1997, 410–411, 229–231.
  • Miyagawa, M.; Akai, N.; Nakata, M. UV-light induced conformational changes of 3-chlorosalicylic acid in low-temperature argon matrices. J. Mol. Struct. 2014, 1058, 142–148.
  • Romero-Sancheza, M. D.; Pastor-Blasa, M. M.; Martýnmartýneza, J. M.; Walzak, M. J. Addition of ozone in the UV radiation treatment of a synthetic styrene-butadiene-styrene (SBS) rubber. Int. J. Adhes. Adhes. 2005, 25, 358–370.
  • Lu, Y.; Sturek, M.; Park, K. Microparticles produced by the hydrogel template method for sustained drug delivery. Int. J. Pharm. 2014, 641, 258–269.
  • Zilberman, M. Active Implants and Scaffolds for Tissue Regeneration; Springer: London, 2011, p 141.
  • Hansen, C. M. Hansen Solubility Parameters: A User's Handbook, 2nd ed.; CRC Press: Boca Raton, FL, 2007.
  • Khayet, M.; Fernández, V. Estimation of the solubility parameters of model plant surfaces and agrochemicals: A valuable tool for understanding plant surface interactions. TBioMed 2012, 9, 45–66.
  • Mark, J. E. Polymer data handbook; Oxford University Press: New York, 1999.
  • Pena, M. A.; Reıllo, A.; Escalera, B.; Bustamante, P. Solubility parameter of drugs for predicting the solubility profile type within a wide polarity range in solvent mixtures. Inter. J. Pharm. 2006, 321, 155–161.
  • Korsmeyer, R. W.; Peppas, N. A. Solute and penetrant diffusion in swellable polymers. III. Drug release from glassy poly(HEMA-co-NVP) copolymers. J. Control. Rel. 1983, 1, 89–98.
  • Liechty, W. B.; Kryscio, D. R.; Slaughter, B. V.; Peppas, N. A. Polymers for drug delivery systems. Annu Rev. Chem, Biomol. Eng. 2010, 1, 149–173.
  • Pankaj, K.; Ashok, L.G.; Bharat, B.S.; Shubhanjali, S. Design and comparative evaluation of in-vitro drug release, pharmacokinetics and gamma scintigraphic analysis of controlled release tablets using novel pH sensitive starch and modified starch-acrylate graft copolymer matrices. Iran J. Pharm. Res. 2015, 14, 677–691.
  • Kiortsis, S.; Kachrimanis, K.; Broussali, Th.; Malamataris, S. Drug release from tableted wet granulations comprising cellulosic (HPMC or HPC) and hydrophobic component. Eur. J. Pharm. Biopharm. 2005, 59, 73–83.
  • Sjöstrand, F.; Hahn, R. G. Validation of volume kinetic analysis of glucose 2.5% solution given by intravenous infusion. Br. J. Anaesth. 2003, 90, 600–607.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.