289
Views
16
CrossRef citations to date
0
Altmetric
Articles

Enhanced Protein Adsorption, Cell Attachment, and Neural Differentiation with the Help of Amine Functionalized Polycaprolactone Scaffolds

, , &
Pages 617-626 | Received 24 Nov 2014, Accepted 18 Mar 2016, Published online: 31 May 2016

References

  • Kim, S.U.; de Vellis, J. Stem cell-based cell therapy in neurological diseases: A review. J. Neurosci. Res. 2009, 87, 2183–2200.
  • Delcroix, G.J.R.; Schiller, P.C.; Benoit, J-P.; Montero-Menei, C.N. Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials. 2010, 31, 2105–2120.
  • Lindvall, O.; Kokaia, Z. Stem cells for the treatment of neurological disorders. Nature. 2006, 441, 1094–1096.
  • Bjorklund, A.; Lindvall, O. Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 2000, 3, 537–544.
  • Mitrecic, D.N.C.; Klimaschewski, L.; Gajovic, S.; Bohl, D.; Pochet, R. Genetically modified stem cells for the treatment of neurological diseases. Front Biosci. 2012, 4, 1170–1181.
  • Gumbiner, B.M. Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell. 1996, 84, 345–357.
  • Drazba, J.; Lemmon, V. The role of cell adhesion molecules in neurite outgrowth on Müller cells. Dev. Biol. 1990, 138, 82–93.
  • Schnell, E.; Klinkhammer, K.; Balzer, S.; Brook, G.; Klee, D.; Dalton, P.; Mey, J. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ϵ-caprolactone and a collagen/poly-ϵ-caprolactone blend. Biomaterials. 2007, 28, 3012–3025.
  • Ghasemi-Mobarakeh, L.; Prabhakaran, M.P.; Morshed, M.; Nasr-Esfahani, M.H.; Ramakrishna, S. Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering. Mater. Sci. Eng., Proc. Conf. 2010, 30, 1129–1136.
  • Gupta, D.; Venugopal, J.; Prabhakaran, M.P.; Dev, V.R.G.; Low, S.; Choon, A.T.; Ramakrishna, S. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater. 2009, 5, 2560–2569.
  • Ghasemi-Mobarakeh, L.; Prabhakaran, M.P.; Morshed, M.; Nasr-Esfahani, M.-H.; Ramakrishna, S. Electrospun poly(ϵ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008, 29, 4532–4539.
  • Prabhakaran, M.P.; Venugopal, J.R.; Chyan, T.T.; Hai, L.B.; Chan, C.K.; Lim, A.Y.; Ramakrishna, S. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng., Part A. 2008, 14, 1787–1797.
  • Yoo, H.S.; Kim, T.G.; Park, T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug. Deliv. Rev. 2009, 61, 1033–1042.
  • Nebe, B.; Finke, B.; Lüthen, F.; Bergemann, C.; Schröder, K.; Rychly, J.; Liefeith, K.; Ohl, A. Improved initial osteoblast functions on amino-functionalized titanium surfaces. Biomol. Eng. 2007, 24, 447–454.
  • Genové, E.; Shen, C.; Zhang, S.; Semino, C.E. The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials. 2005, 26, 3341–3351.
  • Kim, T.G.; Park, T.G. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng., Part A. 2006, 12, 221–233.
  • Lin, Y.-C.; Brayfield, C.A.; Gerlach, J.C.; Peter Rubin, J.; Marra, K.G. Peptide modification of polyethersulfone surfaces to improve adipose-derived stem cell adhesion. Acta Biomater. 2009, 5, 1416–1424.
  • Wong, J.Y.; Leach, J.B.; Brown, X.Q. Balance of chemistry, topography, and mechanics at the cell–biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response. Surf. Sci. 2004, 570, 119–133.
  • Chang, H.I.; Wang, Y. Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds. Rijeka, Croatia: InTechOpen. 2011, pages 569–588.
  • MacDonald, D.E.; Rapuano, B.E.; Deo, N.; Stranick, M.; Somasundaran, P.; Boskey, A.L. Thermal and chemical modification of titanium–aluminum–vanadium implant materials: Effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials. 2004, 25, 3135–3146.
  • Hersel, U.; Dahmen, C.; Kessler, H. RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003, 24, 4385–4415.
  • Roach, P.; Farrar, D.; Perry, C.C. Interpretation of protein adsorption: Surface-induced conformational changes. J. Am. Chem. Soc. 2005, 127, 8168–8173.
  • Taborelli, M.; Eng, L.; Descouts, P.; Ranieri, J.P.; Bellamkonda, R.; Aebischer, P. Bovine serum albumin conformation on methyl and amine functionalized surfaces compared by scanning force microscopy. J. Biomed. Mater. Res. 1995, 29, 707–714.
  • Woo, K.M.; Chen, V.J.; Ma, P.X. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J. Biomed. Mater Res. Part A. 2003, 67A, 531–537.
  • Hayman, E.G.; Pierschbacher, M.D.; Suzuki, S.; Ruoslahti, E. Vitronectin—A major cell attachment-promoting protein in fetal bovine serum. Exp. Cell Res. 1985, 160, 245–258.
  • McFarland, C.D.; Thomas, C.H.; DeFilippis, C.; Steele, J.G.; Healy, K.E. Protein adsorption and cell attachment to patterned surfaces. J. Biomed. Mater. Res. 2000, 49, 200–210.
  • Dewez, J.-L.; Doren, A.; Schneider, Y.-J.; Rouxhet, P.G. Competitive adsorption of proteins: Key of the relationship between substratum surface properties and adhesion of epithelial cells. Biomaterials. 1999, 20, 547–559.
  • Wittmer, C.R.; Phelps, J.A.; Saltzman, W.M.; Van Tassel, P.R. Fibronectin terminated multilayer films: Protein adsorption and cell attachment studies. Biomaterials. 2007, 28, 851–860.
  • Tamada, Y.; Ikada, Y. Effect of preadsorbed proteins on cell adhesion to polymer surfaces. J. Colloid Interface Sci. 1993, 155, 334–339.
  • Arima, Y.; Iwata, H. Effects of surface functional groups on protein adsorption and subsequent cell adhesion using self-assembled monolayers. J. Mater. Chem. 2007, 17, 4079–4087.
  • Prabhakaran, M.P.; Venugopal, J.R.; Ramakrishna, S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials. 2009, 30, 4996–5003.
  • Zhang, Y.; Yong, Y.; He, X.; Cheng, X.; Yang, Q.; Hu, X. Fraction V of bovine albumin improves the adherence and survival of adult rat cerebral cortex neurons in primary culture. Afr. J. Biotechnol. 2009, 8, 490–498.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.