435
Views
20
CrossRef citations to date
0
Altmetric
Articles

Preparation, Characterization and Coreflood Investigation of Polyacrylamide/Clay Nanocomposite Hydrogel System for Enhanced Oil Recovery

&
Pages 1051-1067 | Received 08 Feb 2015, Accepted 08 Aug 2016, Published online: 22 Sep 2016

References

  • Yadav, U. S.; Mahto, V. Investigating the effect of several parameters on the gelation behavior of partially hydrolyzed polyacrylamide−hexamine−hydroquinone gels. Ind. Eng. Chem. Res. 2013, 52, 9532–9537.
  • Yadav, U. S.; Mahto, V. Rheological study of partially hydrolyzed polyacrylamide−hexamine−pyrocatechol gel system. Int. J. Ind. Chem. 2013, 4, 4–8.
  • Mahto, V.; Maurya, A. K. Studies on polymer based gel system to control excessive water production in oilfields. Proceedings of the 3rd Conference for International Congress of Chemistry and Environment, Kuwait, 2007, 615–618.
  • Whittington, L. E.; Naae, D. C. Conformance control gels formation by contact with brine. J. Pet. Sci. Eng. 1992, 7, 45–51.
  • Koohi, A. D.; Sefti, M. V.; Ghalam, A. Z.; Moghadam, A. M.; Sabet, S. Z. Rheological characteristics of sulphonated polyacrylamide/chromium triacetate hydrogels designed for water shut-off. Iran. Polym. J. 2010, 19, 757–770.
  • Singh, R.; Mahto, V. Study of the polymer concentration and polymer/crosslinker ratio effect on gelation time of a novel grafted polymer gel for water shutoff using a central composite design method. Polym. Adv. Technol. 2016, 27, 204–212.
  • Jia, H.; Zhao, J. Z.; Jin, F. Y.; Pu, W. F.; Li, Y. M.; Li, K. X.; Li, M. J. New insights into the gelation behavior of polyethyleneimine cross-linking partially hydrolyzed polyacrylamide gels. Ind. Eng. Chem. Res. 2012, 51, 12155–12166.
  • Yadav, U. S.; Mahto, V. Experimental studies, modeling and numerical simulation of gelation behavior of a partially hydrolyzed polyacrylamide−hexamine−pyrocatechol polymer gel system for profile modification jobs. Int. J. Adv. Pet. Eng. Technol. 2012, 1, 1–16.
  • Jordan, D. S.; Green, D. W.; Terry, R. E.; Willhite, G. P. The effect of temperature on gelation time for polyacrylamide/chromium (III) systems. SPE J. 1982, 22, 463–471.
  • Liu, Y.; Zhu, M.; Liu, X.; Zhang, W.; Sun, B.; Chen, Y.; Adler, H. High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics. Polymer 2006, 47, 1–5.
  • Sirousazar, M.; Kokabi, M.; Hassan, Z. M.; Bahramian, A. R. Polyvinyl alcohol/Namontmorillonite nanocomposite hydrogels prepared by freezing-thawing method: structural, mechanical, thermal and swelling properties. J. Macromol. Sci., Part B: Phys. 2012, 51, 1335.
  • Haraguchi, K.; Li, H.; Matsuda, K.; Takehisa, T.; Elliott, E. Mechanism of forming organic/inorganic network structures during in-situ free radical polymerization in PNIPA-clay nanocomposite hydrogels. Macromolecules 2005, 38, 3482–3490.
  • Haraguchi, K.; Takehisa, T.; Fan, S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly(Nisopropylacrylamide) and clay. Macromolecules 2002, 35, 10162–10171.
  • Aalaie, J.; Rahmatpour, A. Preparation and swelling behavior of partially hydrolyzed polyacrylamide nanocomposite hydrogels in electrolyte solutions. J. Macromol. Sci., Part B: Phys. 2008, 47, 98–108.
  • Haraguchi, K.; Takehisa, T. Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater 2002, 14, 1120–1124.
  • Tongwa, P.; Nygaard, R.; Bai, B. Evaluation of a nanocomposite hydrogel for water shut-off in enhanced oil recovery applications: Design, synthesis, and characterization. J. Appl. Polym. Sci. 2013, 128, 787–794.
  • Okay, O.; Oppermann, W. Polyacrylamide-clay nanocomposite hydrogels: rheological and light scattering characterization. Macromolecules 2007, 40, 3378–3387.
  • Aalaie, J.; Vasheghani-Farahani, E.; Rahmatpour, A.; Semsarzadeh, M. A. Effect of montmorillonite on gelation and swelling behaviour of sulfonated polyacrylamide nanocomposite hydrogels in electrolyte solutions. Eur. Polym. J. 2008, 44, 2024–2031.
  • Zolfaghari, R.; Katbab, A. A.; Nabavizadeh, J.; Tabasi, R. Y.; Nejad, M. H. Preparation and characterization of nanocomposite hydrogels based on polyacrylamide for enhanced oil recovery applications. J. Appl. Polym. Sci. 2006, 100, 2096–2103.
  • Aalaie, J.; Youssefi, M. Study on the dynamic rheometry and swelling properties of the polyacrylamide/laponite nanocomposite hydrogels in electrolyte media. J. Macromol. Sci., Part B: Phys. 2012, 51, 1027–1040.
  • Mansoori, Y.; Atghia, S. V.; Zamanloo, M. R.; Imanzadeh, Gh.; Sirousazar, M. Polymer-clay nanocomposites: Free-radical grafting of polyacrylamide onto organophilic montmorillonite. Eur. Polym. J. 2010, 46, 1844–1853.
  • Sydansk, R. D. A newly developed chromium(III) gel technology SPE. Res. Eng. 1990, 5, 346–352.
  • Bai, Y.; Xiong, C.; Wei, F.; Li, J.; Shu, Y.; Liu, D. Gelation Study on a hydrophobically associating polymer/polyethylenimine gel system for water shut-off treatment. Energy Fuels, http://dx.doi.org/10.1021/ef502505k
  • Yadav, U. S.; Mahto, V. In situ gelation study of organically crosslinked polymer gel system for profile modification jobs. Arab. J. Sci. Eng. 2014, 39, 5229–5235.
  • Elsharafi, M. O.; Bai, B. Effect of weak preformed particle gel on unswept oil zones/areas during conformance control treatments. Ind. Eng. Chem. Res. 2012, 51, 11547–11554.
  • Zhao, J. Z.; Jia, H.; Pu, W. F.; Liao, R. Influences of fracture aperture on the water shutoff performance of polyethyleneimine cross-linking partially hydrolyzed polyacrylamide gels in hydraulic fractured reservoirs. Energy Fuels 2011, 25, 2616–2624.
  • Eisazadeh, A.; Kassim, K. A.; Nur, H. Solid-state NMR and FTIR studies of lime stabilized montmorillonitic and lateritic clays. Appl. Clay Sci. 2012, 67–68, 5–10.
  • Bhardwaj, P.; Aggarwal, S.; Mandal, U. K. Untreated silica nanoparticles containing poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid) composite—effect of copolymer composition. Polym-Plast. Tech. Eng. 2012, 51, 1038–1045.
  • Singh, R.; Kant, K.; Mahto, V. Study of the gelation and rheological behavior of carboxymethyl cellulose-polyacrylamide graft copolymer hydrogel. J. Disp. Sci. 2015, 36, 877–884.
  • Neppalli, R.; Causin, V.; Marega, C.; Modesti, M.; Adhikari, R.; Scholtyssek, S.; Ray, S. S.; Marigo, A. The Effect of different clays on the structure, morphology and degradation behavior of poly(lactic acid). Appl. Clay Sci. 2014, 87, 278–284.
  • Rafipoor, M.; Seftie, M. V.; Salimi, F.; Jarrahian, K.; Ghorashi, S. S. Investigation of rheological properties of polyacrylamide/chromium triacetate hydrogels performed for water shutoff treatment in oil reservoirs. J. Disp. Sci. Tech. 2014, 35, 56–63.
  • Qiao, R.; Zhu, W. Evaluation of modified cationic starch for impeding polymer channeling and in-depth profile control after polymer flooding. J. Ind. Eng. Chem. 2010, 16, 278–282.
  • Hussein, I. A.; Kam, H.; Goyal, S. K.; Karbashewski, E.; Williams, M. C. Thermomechanical degradation in the preparation of polyethylene blends. Polym. Degrad. Stab. 2000, 68, 381–392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.