252
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Thermal Analysis of Vertical Upward Flame Spread and Dripping Behaviors of Polystyrene Foams at Different Altitudes

, , , &
Pages 517-531 | Received 15 Jun 2016, Accepted 14 Apr 2017, Published online: 28 Aug 2017

References

  • Xie, Q. Y.; Tu, R.; Wang, N.; Ma, X.; Jiang, X. Experimental study on flowing burning behaviors of a pool fire with dripping of melted thermoplastics. J. Hazard. Mater. 2014, 267, 48–54.
  • Griffin, G. J.; Bicknell, A. D.; Bradbury, G. P.; White, N. Effect of construction method on the fire behavior of sandwich panels with expanded polystyrene cores in room fire tests. J. Fire Sci. 2006, 24, 275–294.
  • Collier, P. C. R.; Baker, G. B. The influence of construction detailing on the fire performance of polystyrene insulated panels. Fire Technol. 2013, 49, 195–211.
  • Tsai, K. C. Orientation effect on cone calorimeter test results to assess fire hazard of materials. J. Hazard. Mater. 2009, 172, 763–772.
  • An, W.; Sun, J.; Liew, K. M.; Zhu, G. Flammability and safety design of thermal insulation materials comprising PS foams and fire barrier materials, Mater. Design. 2016, 99, 500–508.
  • An, W.; Huang, X.; Wang, Q.; Zhang, Y.; Sun, J.; Liew, K. M.; Wang, H.; Xiao, H. Effects of sample width and inclined angle on flame spread across expanded polystyrene surface in plateau and plain environments. J. Thermoplast. Compos. Mater. 2015, 28, 111–127.
  • Gollner, M. J.; Overholt, K.; Williams, F. A.; Rangwala, A. S.; Perricone, J. Warehouse commodity classification from fundamental principles. Part I: Commodity & burning rates, Fire Saf. J. 2011, 46, 305–316.
  • Overholt, K. J.; Gollner, M. J.; Perricone, J.; Rangwala, A. S.; Williams, F. A. Warehouse commodity classification from fundamental principles. Part II: Flame heights and flame spread. Fire Saf. J. 2011, 46, 317–329.
  • Jiang, L.; Xiao, H.; Zhou, Y.; An, W.; Yan, W.; He, J.; Sun, J. Theoretical and experimental study of width effects on horizontal flame spread over extruded and expanded polystyrene foam surfaces. J. Fire Sci. 2014, 32, 193–209.
  • Jiang, L.; Xiao, H.; An, W.; Zhou, Y.; Sun, J. Correlation study between flammability and the width of organic thermal insulation materials for building exterior walls. Energ. Buildings. 2014, 82, 243–249.
  • Ito, A.; Kashiwagi, T. Characterization of flame spread over PMMA using holographic interferometer: Sample orientation effects. Combust. Flame. 1988, 71, 189–204.
  • Leventon, I. T.; Stoliarov, S. I. Evolution of flame to surface heat flux during upward flame spread on poly (methyl methacrylate). Proc. Combust. Inst. 2013, 34, 2523–2530.
  • Wang, X. G.; Cheng, X. D.; Li, L. M.; Lo, S.; Zhang, H. P. Effect of ignition condition on typical polymer's melt flow flammability. J. Hazard. Mater. 2011, 190, 766–771.
  • Xie, Q. Y.; Zhang, H. P.; Ye, R. B. Experimental study on melting and flowing behavior of thermoplastics combustion based on a new setup with a T-shape trough. J. Hazard. Mater. 2009, 166, 1321–1325.
  • Zarzecki, M.; Quintiere, J. G.; Lyon, R. E.; Rossmann, T.; Diez, F. J. The effect of pressure and oxygen concentration on the combustion of PMMA. Combust. Flame. 2013, 160, 1519–1530.
  • Harper, C. A. Handbook of Building Materials for Fire Protection. New York, USA: McGraw-Hill, 2004.
  • Tewarson, A. Generation of Heat and Chemical Compounds in Fires, SFPE Handbook of Fire Protection Engineering, 3rd ed., Quincy, MA: National Fire Protection Association Press, 2002.
  • Tewarson, A. Flammability Physical Properties of Polymers Handbook. Woodbury, NY: American Institute of Physics, 1996.
  • Yang, J. C.; Hamins, A.; Kashiwagi, T. Estimate of the effect of scale on radiative heat loss fraction and combustion efficiency, Combust. Sci. Technol. 1994, 96, 183–188.
  • Quintiere, J. G. Fundamentals of Fire Phenomena. The Atrium, Southern Gate, Chichester, UK: John Wiley &Sons, 2006.
  • Gollner, M. J.; Overholt, K.; Williams, F. A.; Rangwala, A. S.; Perricone, J. Warehouse commodity classification from fundamental principles. Part I: Commodity & burning rates. Fire Saf. J. 2011, 46, 305–316.
  • Overholt, K. J.; Gollner, M. J.; Perricone, J.; Rangwala, A. S.; Williams, F. A. Warehouse commodity classification from fundamental principles. Part II: Flame heights and flame spread. Fire Saf. J. 2011, 46, 317–329.
  • Kleinhenz, J.; Feier, I. I.; Hsu, S. Y.; T'ien, J. S.; Ferkui, P. V.; Sacksteder, K. R. Pressure modeling of upward flame spread and burning rates over solids in partial gravity. Combust. Flame. 2008, 154, 637–643.
  • Nakamura, Y.; Aoki, A. Irradiated ignition of solid materials in reduced pressure atmosphere with various oxygen concentrations -for fire safety in space habitats, Adv. Space Res. 2008, 41, 777–782.
  • Honda, L. K.; Ronney, P. D. Mechanisms of concurrent-flow flame spread over solid fuel beds. Proc. Combust. Inst. 2000, 28, 2793–2801.
  • Delichatsios, M. A. Flame height in turbulent wall fires with significant flame radiation. Combust. Sci. Technol. 1984, 39, 195–214.
  • Delichatsios, M. A. Turbulent convective flows and burning on vertical walls. Proc. Combust. Inst. 1982, 855–868.
  • Markstein, G. H.; de Ris, J. Upward fire spread over textiles. Proc. Combust. Inst. 1973, 14, 1085–1097.
  • Orloff, L.; de Ris, J.; Markstein, G. H. Upward turbulent fire spread and burning of fuel surface. Proc. Combust. Inst. 1975, 15, 183–192.
  • Tewarson, A.; Ogden, S. D. Fire behavior of polymethylmethacrylate. Combust. Flame. 1992, 89, 237–259.
  • Wu, P. K.; Orloff, L.; Tewarson, A. Assessment of Material Flammability with the FSG Propagation Model and Laboratory Test Methods, in 13th Joint Panel Meeting of the UJNR Panel on Fire Research and Safety, NIST, Gaithersburg, MD, USA, 1996.
  • Tsai, K. C. Influence of sidewalls on width effects of upward flame spread. Fire Saf. J. 2011, 46, 294–304.
  • Delichatsios, M. Flame heights in turbulent wall fires with significant flame radiation. Combust. Sci. Technol. 1984, 39, 195–214.
  • Johnston, M. C.; T'ien, J. S.; Muff, D. E.; Zhao, X.; Olson, S. L.; Ferkul, P. V. Self-induced buoyant blow off in upward flame spread on thin solid fuel. Fire Saf. J. 2015, 71, 279–286.
  • Pizzo, Y.; Conclave, J. L.; Querre, P.; Coutin, M.; Porterie, B. Width effects on the early stage of upward flame spread over PMMA slabs: Experimental observations. Fire Saf. J. 2009, 44, 407–414.
  • Tsai, K. C. Width effect on upward flame spread. Fire Saf. J. 2009, 44, 962–967.
  • Rangwala, A. S.; Buckley, S. G.; Torero, J. Upward flame spread on a vertically oriented fuel surface: The effect of finite width. Proc. Combust. Inst. 2007, 31, 2607–2615.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.