92
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Non―Gaussian-Type Tube-Based Entropy Model for Elastomeric Networks with Polymer Phase Influenced by Filler Loading: Data Analysis for Lightly to Highly Carbon-Black Filled Styrene-Butadiene Rubber Networks

Pages 873-893 | Received 27 Feb 2017, Accepted 11 Oct 2017, Published online: 28 Nov 2017

References

  • Hoei, Y. Applicability of a non-Gaussian-type Tube Model to Filler-Reinforced Rubber Networks: Data Analysis for Carbon Black-Filled Networks. J. Macromol. Sci., Part B, Phys. 2014, 53, 1665–1679. doi:10.1080/00222348.2014.901879.
  • Hoei, Y. Non-Gaussian model for rubber elasticity (I) finite chain extensibility and tube concept. Polym. Bull. 2008, 60, 425–430. doi:10.1007/s00289-007-0860-z.
  • Hoei, Y. Non-Gaussian Model for Rubber Elasticity (II) Comparison with Experiment Data for Unswollen and Swollen Rubbers. Polym. Bull. 2008, 60, 855–862. doi:10.1007/s00289-008-0905-y.
  • Witten, T. A.; Rubinstein, M.; Colby, R. H. Reinforcement of Rubber by Fractal Aggregates. J. Phys.II. France 1993, 3, 367–383. doi:10.1051/jp2:1993138.
  • Huber, G.; Vilgis, T. A. Universal Properties of Filled Rubbers Mechanism for Reinforcement on Different Length Scales. Kautsh. Gummi Kunstst. 1999, 52, 102–107
  • Heinrich, G.; Vilgis, T. A. Contribution of Entanglements to the Mechanical Properties of Carbon Black Filled Polymer Networks. Macromolecules 1993, 26, 1109–1119. doi:10.1021/ma00057a035.
  • Klüppel, M.; Schramm, J. A Generalized Tube Model of Rubber Elasticity and Stress Softening of Filler Reinforced Elastomer Systems. Macromol. Theory Simul. 2000, 9, 742–754. doi:10.1002/1521-3919(20001201)9:9%3c742::AID-MATS742%3e3.0.CO;2-4.
  • Hoei, Y. Molecular Treatment of Rubber-Like Elasticity for Active Filler-Loaded Networks. Rubber Chem. Technol. 2015, 88, 640–659. doi:10.5254/rct.15.84884.
  • Meissner, B.; Matějka, L. A Structure-Based Constitutive Equation for Filler-Reinforced Rubber-like Networks and for the Description of the Mullins Effect. Polymer 2006, 47, 7997–8012. doi:10.1016/j.polymer.2006.09.036.
  • Merckel, Y.; Diani, J.; Brieu, M.; Caillard, J. Effects of the Amount of Fillers and of the Crosslink Density on the Mechanical Behavior of Carbon-Black Filled Styrene Butadiene Rubbers. J. Appl. Polym. Sci. 2013, 129, 2086–2091. doi:10.1002/app.38925.
  • Smallwood, H. M. Limiting Law of the Reinforcement of Rubber. J. Appl. Phys. 1944, 15, 758–766. doi:10.1063/1.1707385.
  • Guth, E.; Gold, O. On the Hydrodynamical Theory of the Viscosity of Suspensions. Paper presented at Am. Phys. Soc. meeting, Indianapolis, USA, Dec 28–30, 1937. Abstract in Proceedings of the American Physical Society, Phys. Rev., 1938, 53, 321–335. (See also Guth E. Theory of Filler Reinforcement, J. Appl. Phys. 1945, 16, 20–25.)
  • Medalia, A. I. Effective Degree of Immobilization of Rubber Occluded within Carbon Black Aggregates. Rubber Chem. Technol. 1972, 41, 1171–1194. doi:10.5254/1.3544731.
  • Medalia, A. I. Filler Aggregates and their effect on Reinforcement. Rubber Chem. Technol. 1974, 47, 411–433. doi:10.5254/1.3540450.
  • Fetters, L.; Lohse, D. J.; Colby, R. H. Physical Properties of Polymers Handbook (J.E. Mark, editor); AIP Press: Woodbury NY, 2006, p.445, Chap. 25.
  • Luo, H.; Klüppel, M.; Schneider, H. Study of Filled SBR Elastomers using NMR and Mechanical Measurements. Macromolecules 2004, 37, 8000–8009. doi:10.1021/ma035985u.
  • Wolff, S.; Wang, M.-J.; Tan, E.-H. Filler-elastomer Interactions. Part VII. Study on Bound Rubber. Rubber Chem. Technol. 1993, 66, 163–177. doi:10.5254/1.3538304.
  • Flory, P. J. Principle of Polymer Chemistry; Cornell University Press: Ithaca, 1953, p. 576, Chap. 13.
  • Einstein, A. A New Determination of Molecular Dimensions. Ann. Phys. 1906, 19, 289–306. doi:10.1002/andp.19063240204.
  • Guth, E.; Gold, O. On the Hydrodynamic Theory of the Viscosity of Suspensions. Phys. Rev. 1938, 53, 322.
  • Hoei, Y. Comparison of two Recent Non-Gaussian-Type Tube Models: Analysis of Mechanical Data on Unfilled Natural and Styrene-Butadiene Rubber Vulcanizates. J. Macromol. Sci., Part B, Phys 2014, 53, 1497–1504. doi:10.1080/00222348.2014.931191.
  • Herd, C. R.; McDonald, G. C.; Hess, W. M. Morphology of Carbon-Black Aggregates: Fractal versus Euclidean Geometry. Rubber Chem. Technol. 1992, 65, 107–129. doi:10.5254/1.3538594.
  • Wang, X.; Robertson, C. G. Strain-induced Nonlinearity of Filled Rubbers. Phys. Rev. 2005, E 72, 031406–031407.
  • Robertson, C. G.; Bogoslovov, R.; Roland, C. M. Effect of Structural Arrest on Poisson's Ratio in Nanoreinforced Elastomers. Phys. Rev. 2007, E 75, 051403–051404.
  • Wang, Z.; Liu, J.; Wu, S.; Wang, W.; Zhang, L. Novel Percolation Phenomena and Mechanism of Strengthening Elastomers by Nanofillers. Phys. Chem. Chem. Phys. 2010, 12, 3014–3030. doi:10.1039/b919789c.
  • Franta, I. Elastomers and Rubbers Compounding Materials; Elsevier: New York, 1989, p. 391, Chap. 6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.