113
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

In-vitro degradation behavior and biological properties of a novel maleated poly (D, L-lactide-co-glycolide) for biomedical applications

, , , , , & show all
Pages 209-218 | Received 29 Aug 2017, Accepted 12 May 2018, Published online: 17 Feb 2019

References

  • Zhou, C.; Shi, Q.; Guo, W.; Terrell, L.; Qureshi, A. T.; Hayes, D. J.; Wu, Q. Electrospun bionanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl. Mater. Interfaces 2013, 9, 3847–3854.
  • Hong, S.; Kim, G. Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells. Carbohydr. Polym. 2011, 83, 940–946.
  • Klouda, L.; Vaz, C.M.; Mol, A.; Baaijens, F. P. T.; Bouten, C. V. C. Effect of biomimetic conditions on mechanical and structural integrity of PGA/P4HB and electrospun PCL scaffolds. J. Mater. Sci. Mater. Med. 2008, 19, 1137–1144.
  • Prabhakaran, M. P.; Vatankhah, E.; Ramakrishna, S. Electrospun aligned PHBV/collagen nanofibrous as substrates for nerve tissue engineering. Biotechnol. Bioeng. 2013, 110, 2775–2784.
  • Lee, J. H.; Rim, N. G..; Jung, H. S.; Shin, H. Control of osteogenic differentiation andmineralization of human mesenchymal stem cells on composite nanofibers containing poly[lactic-co-(glycolic acid)] and hydroxyapatite, Macromol. Biosci. 2010, 10, 173–182.
  • Meng, Z. X.; Wang, Y. S.; Ma, C.; Zheng, W.; Li, L.; Zheng, Y. F. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater. Sci. Eng. C 2010, 30, 1204–1210.
  • Tian, H. Y.; Tang, Z. H.; Zhuang, X. L.; Chen, X. S.; Jing. X. B. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 2012, 37, 237–280.
  • Zhao, W.; Li, J.; Jin, K.; Liu, W.; Qiu, X.; Li, C. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mater. Sci. Eng. C 2016, 59, 1181–1194.
  • Zhou, Z.; Yi, Q.; Liu, L.; Zhao, Y.; Zeng, W.; Ou, B, ; Liu, Q, ; Liu, P. Morphological and functional expression of fibroblast on poly(lactide-co-glycolide)/β-tricalcium phosphate/nature bone. Int. J. Polym. Mater. 2012, 61, 643–653.
  • Ganji, F.; Abdekhodaie M. J. Chitosan-g-PLGA copolymer as a thermosensitive membrane. Carbohydr. Polym. 2010, 80, 740–746.
  • Lee, J. B.; Kim, S. E.; Heo, D. N.; Kwon, I. K.; Choi, B. J. In vitro characterization of nanofibrous PLGA/gelatin/hydroxyapatite composite for bone tissue engineering. Macromol. Res. 2010, 18, 1195–1202.
  • Kim, S. J.; Yang, D. H.; Chun, H. J.; Chae, G. T.; Jang, J. W.; Shim, Y. B. Evaluations of chitosan/poly(D,L-lactic-co-glycolic acid) composite fibrous scaffold for tissue engineering applications. Macromol. Res. 2013, 21, 931–939.
  • Song, B.; Wu, C.; Chang, J. Controllable delivery of hydrophilic and hydrophobic drugs fromelectrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats. Biomed. Mater. Res. B 2012, 100B, 2178–2186.
  • Li, K.; Sun, H.; Sui, H.; Zhang, Y.; Liang, H.; Wu, X.; Zhao, Q. Composite mesoporous silica nanoparticle/chitosan nanofibers for bone tissue engineering. RSC Adv. 2015, 5, 17541–17549.
  • Zhou, Z.; Huang, H.; Huang, T.; Peng, C.; Ou, B.; Zhou, H.; Zeng, W.; Liu, O.; Yang, Z.; Xiang, L.; He, S. Influences of molecular weight and content of polyethylene glycol on morphology and size of nano-bioactive glass. J. Macromol. Sci. Part A. Pure Appl. Chem. 2014, 51, 522–527.
  • Zhou, Z.; Yi, Q.; Liu, X.; Liu, L.; Liu, Q. In vitro degradation behaviors of Poly-L-lactide/bioactive glass composite materials in phosphate-buffered solution. Polym. Bull. 2009, 63, 575–586.
  • Niu, X. F.; Luo, Y. F.; Li, Y. G.; Fu, C. H.; Chen, J.; Wang, Y. L. Design of bioinspired polymeric materials based on poly(D,L-lactic acid) modifications towards improving its cytocompatibility. J Biomed Mater Res. 2008, 84A, 908–916.
  • Ma, G. L.; Yu, M.; Chen, M. M.; Song, C. X. Synthesis and physicochemical evaluation of maleic anhydride-grafted-poly(D,L-lactide-co-glycolide) as functional stent coating for localized gene delivery. J Control Release 2011, 152, e133–134.
  • Zhou, Z.; Huang, H.; Huang, T.; Peng, C.; Zhou, H.; Liu, Q.; Zeng, W.; Liu, L.; Cao, D.; He, S.; Xiang, L.; Yan, H. Synthesis and characterization of novel maleated poly(D,L-lactide-co-glycolide) by direct melt copolymerization. Polym. Bull. 2015, 72, 1531–1543.
  • Zhang, Q.; Zhou, Z.; Peng, C.; Huang, T.; Liu, W.; Zhou, H.; Wang, W.; Yan, H. Preparation and properties of novel maleated poly (D, L-lactide-co-glycolide) porous scaffolds for tissue engineering. J. Macromol. Sci. Part B, Phys. 2017, 56, 505–515.
  • Cui, J.; Zhou, Z.; Yang, Y.; Liu, W.; Zhao, Y.; Peng, C.; Huang, T.; Zhou, H.; Liu, L.; Zhang, Q. Synthesis, characterization, and degradation behaviors of poly(D,L-lactide-co-glycolide) modified by maleic anhydride and ethanediamine. Int. J. Polym. Anal. Ch, 2017, 22, 575–586.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.