124
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication of Polypropylene/Poly (Trimethylene Terephthalate) Blend Fibers with Highly Improved Resiliency and Preserved Mechanical Properties

&
Pages 141-160 | Received 15 Aug 2018, Accepted 03 Dec 2018, Published online: 11 Jan 2019

References

  • Sauter, D. W.; Taoufik, M.; Boisson, C. Polyolefins, A Success Story. Polymers. 2017, 9, 185–193.
  • Zhu, Y.; Liang, C.; Bo, Y.; Xu, S. Compatibilization of Polypropylene/Recycled Polyeth-ylene Terephthalate Blends with Maleic Anhydride Grafted Polypropylene in the Presence of Diallyl Phthalate. J. Polym. Res. 2015, 22, 35.
  • Ataeefard, M.; Mohseni, M.; Moradian, S. Polypropylene/Clay Nanocomposite: Kinetic and Thermodynamic of Dyeing with Various Disperse Dyes. J. Text. Inst. 2016, 107, 182–190. DOI: 10.1080/00405000.2015.1019253.
  • Arvedson, M. Low creep polypropylene textiles. US Patent 5171628A. 1992.
  • Tavanaie, M. A.; Shoushtari, A. M.; Goharpey, F. Polypropylene/Poly (Butylene Terephthalate) Melt Spun Alloy Fibers Dyeable with Carrier-Free Exhaust Dyeing as an Environmentally Friendlier Process. J. Clean. Prod. 2010, 18, 1866–1871. DOI: 10.1016/j.jclepro.2010.08.003.
  • Safapour, S.; Seyed-Esfahani, M.; Auriemma, F.; Ruiz de Ballesteros, O.; Vollaro, P.; Di Girolamo, R.; De Rosa, C.; Khosroshahi, A. Reactive Blending as a Tool for Obtaining Poly(Ethylene Terephthalate)-Based Engineering Materials with Tailored Properties. Polymer. 2010, 51, 4340–4350. DOI: 10.1016/j.polymer.2010.07.011.
  • Aparna, S.; Purnima, D.; Adusumalli, R. B. Review on Various Compatibilizers and Its Effect on Mechanical Properties of Compatibilized Nylon Blends. Polym. – Plast. Technol. Eng. 2017, 56, 617–634. DOI: 10.1080/03602559.2016.1233280.
  • Fallahi, E.; Barmar, M.; Kish, M. H. Micro and Nano Fibrils from Polypropylene/Nylon 6 Blends. J. Appl. Polym. Sci. 2008, 108, 1473–1481. DOI: 10.1002/app.27792.
  • Si, X.; Guo, L.; Wang, Y.; Lau, K. Preparation and Study of Polypropylene/Polyethylene Terephthalate Composite Fibres. Compos. Sci. Technol. 2008, 68, 2943–2947. DOI: 10.1016/j.compscitech.2007.11.008.
  • Rizvi, A.; Andalib, Z. K. M.; Park, C. B. Fiber-Spun Polypropylene; Polyethylene Terephthalate Micro-Fibrillar. J. Polymer. 2017, 110, 139–148. DOI: 10.1016/j.polymer.2016.12.054.
  • Zhou, Y. G.; Su, B.; Turng, L. S. Poly(Ethylene-co-octene) Blends Prepared through Multi-Stretched Extrusion: Morphological Evolution, Toughening and Reinforcing Mechanism. Polym. Plast. Technol. Eng. 2016, 133, 1–16.
  • Wang, J.; Yang, M.; Wu, H.; Guo, S. Mechanically Strong and Ductile Polypropylene/Poly(Ethylene-co-octene) Blends Prepared through Multi-Stretched Extrusion: Morphological Evolution, Toughening and Reinforcing Mechanism. Polym. Technol. Eng. 2017, 124, 5279–5285.
  • Mandal, P. K.; Siddhanta, S. K.; Chakraborty, D. Engineering Properties of Compatibilized Polypropylene/liquid Crystalline Polymer Blends. J. Appl. Polym. Sci. 2012, 124, 5279–5285.
  • Chuah, H. H. Poly(Trimethylene Terephthalate). In Encyclopedia of Polymer Science and Technology; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2001, 3, 198–211.
  • Wu, J.; Schultz, J. M.; Samon, J. M.; Pangelinan, A. B.; Chuah, H. H. In Situ Study of Structure Development in Poly (Trimethylene Terephthalate) Fibers during Stretching by Simultaneous Synchrotron Small- and Wide-Angle X-Ray Scattering. Polymer 2001, 42, 7141–7151. DOI: 10.1016/S0032-3861(01)00042-8.
  • Piccinini, P.; Senaldi, C.; Lopes, J. F. A. Fibre Labelling Polytrimethylene Terephthalate - PTT- DuPont; JRC Scientific and Policy Reords, Italy, 2013, 1–14.
  • Kurian, J. V. A New Polymer Platform for the Future—Sorona® from Corn Derived 1, 3-Propanediol. J. Polym. Environ. 2005, 13, 159–167. DOI: 10.1007/s10924-005-2947-7.
  • Wu, G.; Li, H.; Wu, Y.; Cuculo, J. A. Structure and Property Studies of Poly(Trimethylene Terephthalate) High-Speed Melt Spun Fibers. Polymer. 2002, 43, 4915–4922. DOI: 10.1016/S0032-3861(02)00306-3.
  • Eberl, A.; Heumann, S.; Kotek, R.; Kaufmann, F.; Mitsche, S.; Cavaco-Paulo, A.; Gübitz, G. M. Enzymatic Hydrolysis of PTT Polymers and Oligomers. J. Biotechnol. 2008, 135, 45–51.
  • Rosch, J.; Mulhaupt, R. Comparison of Maleic Anhydride-Grafted Poly(Propylene) with Maleic Anhydride-Grafted Polystyrene-Block-Poly(Ethene-Co-but-1-Ene)-Block-Polystyrene as Blend Compatibilizers of Poly(Propylene) Polyamide-6 Blends. Makromol. Chem., Rapid Commun. 1993, 14, 503–509.
  • Mantia, F. P. La; Ceraulo, M.; Giacchi, G.; Mistretta, M. C.; Botta, L. Effect of a Compatibilizer on the Morphology and Properties of Polypropylene/Polyethylentherephthalate Spun Fibers. Polymers. 2017, 9, 1–14.
  • Xue, M.; Yu, Y.; Chuah, H. H.; Qiu, G. Reactive Compatibilization of Poly (Trimethylene Terephthalate)/Polypropylene Blends by Polypropylene‐graft‐maleic Anhydride. Part 1. Rheology, Morphology, Melting, and Mechanical Properties. J. Macromol. Sci., Part B, Phys. 2007, 46, 387–401. DOI: 10.1080/00222340601158241.
  • Lin, S.-W.; Cheng, Y.-Y. Miscibility, Mechanical and Thermal Properties of Melt-Mixed Poly (Trimethylene Terephthalate)/Polypropylene Blends. Polym. Plast. Technol. Eng. 2009, 48, 827–833. DOI: 10.1080/03602550902994888.
  • Gooneie, A.; Nazockdast, H.; Shahsavan, F. Effect of Selective Localization of Carbon Nanotubes in PA6 Dispersed Phase of PP/PA6 Blends on the Morphology Evolution with Time, Part 1: Droplet Deformation under Simple Shear Flows. Polym. Eng. Sci. 2015, 55, 1504–1519. DOI: 10.1002/pen.24098.
  • Gooneie, A.; Nazockdast, H.; Shahsavan, F. Effect of Selective Localization of Carbon Nanotubes in PA6 Dispersed Phase of PP/PA6 Blends on the Morphology Evolution with Time, Part 2: Relaxation of Deformed Droplets after Cessation of Flow. Polym. Eng. Sci. 2016, 56, 51–60. DOI: 10.1002/pen.24191.
  • Bigdeli, A.; Nazockdast, H.; Rashidi, A.; Yazdanshenas, M. E. Role of Nanoclay in Determining Microfibrillar Morphology Development in PP/PBT Blend Nanocomposite Fibers. J. Polym. Res. 2012, 19, 289–297.
  • Oliani, W. L.; Parra, D. F.; Komatsu, L. G. H.; Lincopan, N.; Rangari, V. K.; Lugao, A. B. Fabrication of Polypropylene/Silver Nanocomposites for Biocidal Applications. Mater. Sci. Eng. C 2017, 75, 845–853. DOI: 10.1016/j.msec.2017.02.109.
  • Khonakdar, H. A.; Ehsani, M. A.; Asadinezhad, A.; Jafari, S. H.; Wagenknecht, U. Nanofilled Polypropylene/Poly(Trimethylene Terephthalate) Blends: A Morphological and Mechanical Properties Study. J. Macromol. Sci., Part B, Phys. 2013, 52, 897–909. DOI: 10.1080/00222348.2012.742816.
  • Marcinčin, A.; Hricová, M.; Aneja, A.; Andrejková, A.; Körmendyová, E. Polypropy-lene/Poly (Trimethylene Terephthalate)-Blend Fibers. J. Macromol. Sci., Part B, Phys. 2006, 45, 945–956. DOI: 10.1080/00222340600796223.
  • Jafari, S. H.; Kalati-Vahid, A.; Khonakdar, H. A.; Asadinezhad, A.; Wagenknecht, U.; Jehnichen, D. Crystallization and Melting Behavior of Nanoclay-Containing Polypropylene/Poly(Trimethylene Terephthalate) Blends. Express Polym. Lett. 2012, 6, 148–158. DOI: 10.3144/expresspolymlett.2012.16.
  • Xue, M. L.; Yu, Y. L.; Chuah, H. H.; Chuah, H. Reactive Compatibilization of Poly(trimethylene Terephthalate)/Polypropylene Blends by Polypropylene-graft-maleic Anhydride. Part 2. Crystallization Behavior. J Macromol Sci, Part B, Phys. 2007, 46, 603–615. DOI: 10.1080/00222340701258008.
  • Lin, Z.; Xu, B.; Guan, Z.; Chen, C. Effects of Polytrimethylene Terephthalate on Crystallization and Melting Behavior of Beta-Polypropylene in the Blends. J. Ind. Eng. Chem. 2013, 19, 926–931. DOI: 10.1016/j.jiec.2012.11.009.
  • Xue, M. L.; Yu, Y. L.; Chuah, H. H.; Rhee, J. M.; Kim, N. H.; Lee, J. H. Miscibility and Compatibilization of Poly(trimethylene Terephthalate)/Acrylonitrile-butadiene-styrene Blends. Eur Polym J. 2007, 43, 3826–3837. DOI: 10.1016/j.eurpolymj.2007.06.048.
  • Upadhyay, D.; Mohanty, S.; Nayak, S. K.; Parvaiz, M. R.; Panda, B. P. Impact Modification of Poly(trimethylene Terephthalate)/Polypropylene Blend Nanocomposites: Fabrication and Characterization. J. Appl. Polym. Sci. 2011, 120, 932–943. DOI: 10.1002/app.33106.
  • Xue, M. L.; Li, P. Phase Morphology and Clay Distribution of Poly(trimethylene Terephthalate)/Polypropylene/Montmorillonite Nanocomposites. J. Appl. Polym. Sci. 2009, 113, 3883–3890. DOI: 10.1002/app.30417.
  • Afshari, M.; Kotek, R.; Kish, M. H.; Dast, H. N.; Gupta, B. S. Effect of Blend Ratio on Bulk Properties and Matrix–fibril Morphology of Polypropylene/Nylon 6 Polyblend Fibers. Polymer. 2002, 43, 1331–1341. DOI: 10.1016/S0032-3861(01)00689-9.
  • Tavanaie, M. A.; Shoushtari, A. M.; Goharpey, F.; Mojtahedi, M. R. Matrix-Fibril Morphology Development of Polypropylene/Poly (Butylene Terephthalate) Blend Fibers at Different Zones of Melt Spinning Process and Its Relation to Mechanical Properties. Fibers Polym. 2013, 14, 396–404. DOI: 10.1007/s12221-013-0396-9.
  • Tavanaie, M. A.; Shoushtari, A. M.; Goharpey, F. Effects of Viscosity Ratio on Morphological, rheological and Mechanical Properties of PP/PBT Melt Spun Alloy Fibers. J Macromol Sci., Part B, Phys. 2010, 49, 163–173. DOI: 10.1080/00222340903351874.
  • Szymczyk, A.; Roslaniec, Z.; Zenker, M.; García-Gutiérrez, M. C.; Hernandez, J. J.; Rueda, D. R.; Nogales, A.; Ezquerra, T. A. Preparation and Characterization of Nanocomposites Based on COOH Functionalized Multi-Walled Carbon Nanotubes and on Poly (Trimethylene Terephthalate). Express Polym. Lett. 2011, 5, 977–995. DOI: 10.3144/expresspolymlett.2011.96.
  • Maleknia, L.; Nazockdast, H.; Rashidi, A. S.; Yazdanshenas, M. E. Thermal, Morphological and Rheological Study of Polytrimethylene Terephthalate/Thermotropic Liquid Crystalline Polymer Binary Blend. Asian J. Chem. 2009, 21, 248–256.
  • Acierno, S.; Barretta, R.; Luciano, R.; Marotti de Sciarra, F.; Russo, P. Experimental Evaluations and Modeling of the Tensile Behavior of Polypropylene/Single-Walled Carbon Nanotubes Fibers. Compos. Struct. 2017, 174, 12–18. DOI: 10.1016/j.compstruct.2017.04.049.
  • Krištofič, M.; Ujhelyiová, A. Compatibilisation of PP/PA Blends. Fibres Text. East. Eur. 2012, 93, 30–36.
  • Xia, X.-F.; Zhang, J.-H.; Fan, J.-M.; Jiang, Q.-L.; Xu, S.-A. Effect of Functionalization on Non-Isothermal Crystallization Behavior of Polypropylene. Int. J. Polym. Anal. Charact. 2016, 21, 697–707. DOI: 10.1080/1023666X.2016.1207128.
  • Kolgjini, B.; Schoukens, G.; Kiekens, P. Influence of Stretching on the Resilience of LLDPE Monofilaments for Application in Artificial Turf. J. Appl. Polym. Sci. 2012, 124, 4081–4089. DOI: 10.1002/app.35014.
  • Adar, F.; Noether, H. Raman Microprobe Spectra of Spin-Oriented and Drawn Filaments of Poly(Ethylene Terephthalate). Polymer. 1985, 26, 1935–1943. DOI: 10.1016/0032-3861(85)90171-5.
  • Patel, M.; Marscheider-Weidemann, F.; Schleich, J.; Hüsing, B.; Angerer, G.; Wolf, O.; Crank, M.; Patel, M. Techno-Economic Feasibility of Large-Scale Production of Bio-Based Polymers in Europe. Techncial Rep. Eur. 2005, 22103, 1–260.
  • Korkmaz, Y.; Kocer, S. D. Resilience Behaviors of Woven Acrylic Carpets under Short- and Long-Term Static Loading. J. Text. Inst. 2010, 101, 236–241. DOI: 10.1080/00405000802376161.
  • Zhang, X. Fundamentals of Fiber Science. DEStech Publications, Inc, USA, 2014.
  • Gao, X.; Sun, Y.; Meng, Z.; Sun, Z. Analytical Approach of Mechanical Behavior of Carpet Yarn by Mechanical Models. Mater. Lett. 2011, 65, 2228–2230. DOI: 10.1016/j.matlet.2011.04.087.
  • Celik, N.; Koc, E. An Experimental Study on Thickness Loss of Wilton Type Carpets Produced with Different Pile Materials after Prolonged Heavy Static Loading. Part 2: Energy Absorption and Hysteresis Effect. Fibres Text East EUR. 2007, 15, 87–92.
  • Mark, H. Some Remarks about Resilience of Textile Materials. Text. Res. J. 1946, 16, 361–368. DOI: 10.1177/004051754601600801.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.