112
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effect of Organoclay on the Rheology, Morphology, Thermal and Mechanical Properties of Nanocomposite Fibers Based on Polypropylene/Poly(Trimethylene Terephthalate)/Organoclay

, , &
Pages 435-459 | Received 17 Apr 2020, Accepted 25 Nov 2020, Published online: 11 Apr 2021

References

  • Rizvi, A.; Andalib, Z. K. M.; Park, C. B. Fiber-Spun Polypropylene; Polyethylene Terephthalate Micro-Fibrillar. Polymer 2017, 110, 139–148. DOI: 10.1016/j.polymer.
  • Altay, L.; Bozaci, E.; Atagur, M.; Sever, K.; Tantug, G.; Sarikanat, M.; Seki, Y. The Effect of Atmospheric Plasma Treatment of Recycled Carbon Fiber at Different Plasma Powers on Recycled Carbon Fiber and Its Polypropylene Composites. J. Appl. Polym. Sci. 2019, 136, 47131–47137. DOI: 10.1002/app.
  • Habibolah Zargar, M. R.; Mousavi Shoushtari, A. Fabrication of Polypropylene/Poly (Trimethylene Terephthalate) Blend Fibers with Highly Improved Resiliency and Preserved Mechanical Properties. J. Macromol. Sci. Part B Phys. 2019, 58, 141–160. DOI: 10.1080/00222348.2018.1558576.
  • Habibolah Zargar, M. R.; Mousavi Shoushtari, A. Fabrication of Polypropylene (PP)/Poly Trimethylene Terephthalate (PTT)/Nanoclay Nanocomposite Fibers with Tailored Properties. J. Macromol. Sci. Part B Phys. 2019, 63, 1–27. DOI: 10.1080/00222348.2019.1577543.
  • Lee, J. K. Y.; Chen, N.; Peng, S.; Li, L.; Tian, L.; Thakor, N.; Ramakrishna, S. Polymer-Based Composites by Electrospinning: Preparation and Functionalization with Nano-Carbons. Prog. Polym. Sci. 2018, 86, 40–84. DOI: 10.1016/j.progpolymsci.2018.07.002.
  • Balog, S.; Urban, D. A.; Milosevic, A. M.; Crippa, F.; Rothen-Rutishauser, B.; Petri-Fink, A. Taylor Dispersion of Nanoparticles. J. Nanoparticle Res. 2017, 19, 287. DOI: 10.1007/s11051-017-3987-3.
  • Ajeesh, G.; Bhowmik, S.; Sivakumar, V.; Varshney, L.; Kumar, V.; Abraham, M. Influence of Surface Activated Carbon Nano Fiber on Thermo-Mechanical Properties of High Performance Polymeric Nano Composites. J. Compos. Mater. 2017, 51, 1057–1072. DOI: 10.1177/0021998316658540.
  • Kuo, C.-F. J.; Lan, W.-L.; Chen, S.-H.; Lin, F.-S.; Dong, M.-Y. Development of Disperse Dye Polypropylene Fiber and Process Parameter Optimization Part I: development of Dyeable Polypropylene Fiber and Parameter Optimization. Text. Res. J. 2018, 88, 3–13. trj.sagepub.com. DOI: 10.1177/0040517516673335.
  • Teli, M. D.; Desai, P. V. Effect of Compatibilizer on the Dyeability of Polypropylene/Pol-Ytrimethylene Terephthalate Polyblend Fibres. Int. Res. J. Eng. Technol 2015, 2, 396–402.
  • Tavanaie, M. A.; Shoushtari, A. M.; Goharpey, F. Polypropylene/Poly (Butylene Terephthalate) Melt Spun Alloy Fibers Dyeable with Carrier-Free Exhaust Dyeing as an Environmentally Friendlier Process. J. Clean. Prod. 2010, 18, 1866–1871. DOI: 10.1016/j.jclepro.2010.08.003.
  • Mingliang, G.; Demin, J.; Weibing, X. Study on the Crystallization Properties of Polypropylene /Montmorillonite Composites. Polym. Plast. Technol. Eng. 2007, 46, 985–990. DOI: 10.1080/03602550701519449.
  • Normand, G.; Disdier, E. P.; Vergnes, B. Matrix Degradation during High Speed Extrusion of Polypropylene/Clay Nanocomposites: Influence on Filler Dispersion. In International Polymer Processing; Carl Hanser Verlag: Munich, 2016; Vol. 31, pp. 508–516. DOI: 10.3139/217.3285.
  • Upadhyay, D.; Mohanty, S.; Nayak, S. K.; Parvaiz, M. R.; Panda, B. P. Impact Modification of Poly(Trimethylene Terephthalate)/Polypropylene Blend Nanocomposites: Fabrication and Characterization. J. Appl. Polym. Sci. 2011, 120, 932–943. DOI: 10.1002/app.33106.
  • Khonakdar, H. A.; Ehsani, M.; Asadinezhad, A.; Jafari, S.; Wagenknecht, U. Nanofilled Polypropylene/Poly(Trimethylene Terephthalate) Blends: A Morphological and Mechanical Properties Study. J. Macromol. Sci. Part B. Phys. 2013, 52, 897–909. DOI: 10.1080/00222348. 2012.742816.
  • Jafari, S. H.; Kalati, A.; Khonakdar, H. A.; Asadinezhad, A.; Wagenknecht, U.; Jehnichen, D. Crystallization and Melting Behavior of Nanoclay-Containing Polypropylene/Poly (Trimethylene Terephthalate) Blends. Express Polym. Lett. 2012, 6, 148–158. DOI: 10.3144/expresspolymlett.2012.16.
  • Chow, W. S. Polypropylene Blends: Properties Control by Design; Springer International Publishing: Singapore, 2019; pp 419–480. DOI: 10.1007/978-3-030-12903-3_8.
  • Bigdeli, A.; Nazockdast, H.; Rashidi, A.; Yazdanshenas, M. E. The Role of Nanoclay Partitioning and Fibril Formation on Dyeability of Blend Nanocomposite Fibres, Color. Coloration Technol. 2013, 129, 289–297. DOI: 10.1111/cote.12038.
  • Bigdeli, A.; Nazockdast, H.; Rashidi, A.; Yazdanshenas, M. E. The Effect of Feeding Method and Compatibilizer on Nanoclay Partitioning and Microfibrillar Morphology Development in PP/PBT/Organoclay Blend Nanocomposite Fibers. In International Polymer Processing; Carl Hanser Verlag: Munich, 2013; Vol. 28, 174–179. DOI: 10.3139/217.2669.
  • Bigdeli, A.; Nazockdast, H.; Rashidi, A.; Yazdanshenas, M. E. Role of Nanoclay in Determining Microfibrillar Morphology Development in PP/PBT Blend Nanocomposite Fibers. J. Polym. Res. 2012, 19, 289–297. DOI: 10.1007/s10965-012-9990-6.
  • Heidari Golfazani, M. E.; Nazockdast, H.; Rashidi, A.; Yazdanshenas, E. The Role of Nanoclay Partitioning on Microfibril Morphology Development in Polypropylene/ Polyamide 6 Nanocomposite Fibers. J. Macromol. Sci. Part B Phys. 2012, 51, 956–967. DOI: 10.1080/00222348.2011.610259.
  • Tavanaie, M. A.; Shoushtari, A. M.; Goharpey, F. Effects of Viscosity Ratio on Morphological, Rheological and Mechanical Properties of PP/PBT Melt Spun Alloy Fibers. J. Macromol. Sci. Part B Phys. 2010, 49, 163–173. 00222340903351874. DOI: 10.1080/.
  • Tavanaie, M. A.; Shoushtari, A. M.; Goharpey, F.; Mojtahedi, M. R. Matrix-Fibril Morphology Development of Polypropylene/Poly (Butylene Terephthalate) Blend Fibers at Different Zones of Melt Spinning Process and Its Relation to Mechanical Properties. Fibers Polym. 2013, 14, 396–404. DOI: 10.1007/s12221-013-0396-9.
  • Rahbar, R. S.; Vadood, M. Predicting the Physical Properties of Drawn Nylon-6 Fibers Using an Artificial-Neural-Network Model. Mater. Technol. 2015, 49, 325–332. DOI: 10.17222/mit.2013.128.
  • Das, S.; Samal, S. K.; Smita Mohanty, S.; Nayak, S. K. Crystallization of Fucose. In Crystallization in Multiphase Polymer Systems; Elsevier Inc.: The Netherlands, 2018; pp 313–339.
  • Pan, D.; He, H.; Sun, J.; Cao, M.; Qin, Z.; Chen, L. Radial Crystallization Difference of Melt-Spun Polypropylene Fiber along Spinning Line. J. Appl. Polym. Sci. 2019, 136, 47175–47183. DOI: 10.1002/app.
  • Battisti, M.; Perko, L.; Arunachalam, S.; Stieger, S.; Friesenbichler, W. Influence of Elongational Flow Generating Nozzles on Material Properties of Polypropylene Nanocomposites. Polym. Eng. Sci. 2018, 58, 3–12. DOI: 10.1002/pen.24361.
  • Yin, S. Production and Characterisation of the Physical and Mechanical Properties of Recycled PP Fibers. In Development of Recycled Polypropylene Plastic Fibres to Reinforce Concrete; Springer: Singapore, 2017; pp. 51–68. DOI: 10.1007/978-981-10-3719-1_3.
  • Eichhorn, S. J. Handbook of Textile Fibre Structure; Woodhead Pub.: UK, 2009; pp. 203–204.
  • Kalantari, B.; Mojtahedi, M. R. M.; Shoushtari, A. M.; Haji, A. Effect of Hot Drawing Process on Physical and Thermal Properties of Polypropylene Fiber Containing Selective Peroxide and Comparison with Conventional Polypropylene Fibers. Polímeros 2012, 22, 467–474. DOI: 10.1590/S0104-14282012005000074.
  • Hajiraissi, R.; Jahani, Y. Non-Terminal Behavior as a Finger Print to Follow Droplet Deformation. Adv. Polym. Technol. 2018, 37, 1517–1525. DOI: 10.1002/adv.21810.
  • Xue, M.; Yu, Y.; Chuah, H. H.; Qiu, G. Reactive Compatibilization of Poly (Trimethylene Terephthalate)/ Polypropylene Blends by Polypropylene-Graft-Maleic Anhydride. Part 1. Rheology, Morphology, Melting, and Mechanical Properties. J. Macromol. Sci. Part B Phys. 2007, 46, 387–401. DOI: 10.1080/00222340601158241.
  • Paran, S. M. R.; Abdorahimi, M.; Shekarabi, A.; Khonakdar, H. A.; Jafari, S. H.; Saeb, M. R. Modeling and Analysis of Nonlinear Elastoplastic Behavior of Compatibilized Polyolefin/Polyester/Clay Nanocomposites with Emphasis on Interfacial Interaction Exploration. Compos. Sci. Technol 2018, 54, 92–103. DOI: 10.1016/j.compscitech.2017.11.018.
  • Gooneie, A.; Nazockdast, H.; Shahsavan, F. Effect of Selective Localization of Carbon Nanotubes in PA6 Dispersed Phase of PP/PA6 Blends on the Morphology Evolution with Time, Part 1: Droplet Deformation under Simple Shear Flows. Polym. Eng. Sci. 2015, 55, 1504–1519. DOI: 10.1002/pen.24098.
  • Zhang, C.; Liu, X.; Liu, H.; Wang, Y.; Guo, Z.; Liu, C. Multi-Walled Carbon Nanotube in a Miscible PEO/PMMA Blend: Thermal and Rheological Behavior. Polym. Test 2019, 75, 367–372. DOI: 10.1016/j.polymertesting.2019.03.003.
  • Hershey, C.; Jayaraman, K. Dynamics of Entangled Polymer Chains with Nanoparticle Attachment under Large Amplitude Oscillatory Shear. J. Polym. Sci. Part B Polym. Phys. 2019, 57, 62–76. DOI: 10.1002/polb.24768.
  • Wang, K.; Chen, Y. Microstructures and Mechanical Properties of Poly (Trimethylene Terephthalate)/Maleic Anhydride Grafted Poly (Ethylene-Octene)/Polypropylene Blends. J. Macromol. Sci. Part B Phys. 2010, 50, 164–171. DOI: 10.1080/00222341003648763.
  • Hajiraissi, R. Linear and Nonlinear Melt Viscoelastic Properties of Fibrillated Blend Fiber Based on Polypropylene/Polytrimethylene Terephthalate. Polym. Bull. 2019, 77, 2423–2442. DOI: 10.1007/s00289-019-02865-1..
  • Utracki, L. A. Clay-Containing Polymeric Nanocomposites; iSmithers Rapra Publishing: UK, 2004; Vol. 1.
  • Xue, M. L.; Li, P. Phase Morphology and Clay Distribution of Poly(Trimethylene Terephthalate)/Polypropylene/Montmorillonite Nanocomposites. J. Appl. Polym. Sci. 2009, 113, 3883–3890. DOI: 10.1002/app.30417.
  • Ebrahimzade, A.; Mojtahedi, M. R. M.; Semnani Rahbar, R. Study on Characteristics and Afterglow Properties of Luminous Polypropylene/ Rare Earth Strontium Aluminate Fiber. J. Mater. Sci. Mater. Electron. 2017, 28, 8167–8176. DOI: 10.1007/s10854-017-6525-2.
  • Mirfendereski, S. M. Synthesis of Zeolite NaA Nano-Crystals: Effect of Synthesis Parameters on Crystallinity and Crystal Size. Iran. J. Chem. Eng. 2019, 16, 22–38.
  • Esfandiari, A.; Nazokdast, H.; Rashidi, A.-S.; Yazdanshen, M.-E. Review of Polymer-Organoclay Nanocomposites. J. Appl. Sci. 2008, 8, 545–561. DOI: jas.2008. 545.561. DOI: 10.3923/jas.2008.545.561.
  • Calcagno, C. I. W.; Mariani, C. M.; Teixeira, S. R.; Mauler, R. S. Morphology and Crystallization Behavior of the PP/PET/Organoclay Nanocomposites. J. Appl. Polym. Sci. 2009, 111, 29–36. DOI: 10.1002/app.28977.
  • Szymczyk, A.; Roslaniec, Z.; Zenker, M.; Garcıa-Gutierrez, M. C.; Hernandez, J. J.; Rueda, D. R.; Nogales, A.; Ezquerra, T. A. Preparation and Characterization of Nano-compositesBased on COOH Functionalized Multi-Walled Carbon Nanotubes and on Poly (Trimethylene Terephthalate). Express Polym. Lett. 2011, 5, 977–995. expresspolymlett.2011.96. DOI: 10.3144/.
  • Srisawat, N.; Nithitanakul, M.; Srikulkit, K. Spinning of Fibers from Polypropylene/Silica Composite Resins. J. Compos. Mater. 2009, 19, 53–58. DOI: 10.1177/0021998311410477.
  • Awad, S. A.; Khalaf, E. M. Investigation of Improvement of Properties of Polypropylene Modified by Nano Silica Composites. Compos. Commun. 2019, 12, 59–63. DOI: 10.1016/j.coco.2018.12.008.
  • Barzegar, F.; Bello, A.; Fabiane, M.; Khamlich, S.; Momodu, D.; Taghizadeh, F.; Dangbegnon, J.; Manyala, N. Preparation and Characterization of Poly(Vinyl Alcohol) /Graphene Nanofibers Synthesized by Electrospinning. J. Phys. Chem. Solids 2015, 77, 139–145. DOI: 10.1016/j.jpcs.2014.09.015.
  • Bischoff, E.; Simon, D. A.; Liberman, S. A.; Mauler, R. S. Compounding Sequence as a Critical Factor in the Dispersion of OMMT/Hydrocarbon Resin/PP-g-MA/PP Nanocomposites. Polym. Bull. 2019, 76, 849–863. DOI: 10.1007/s00289-018-2408-9.
  • Majka, T. M.; Pielichowski, K. Functionalized Clay-Containing Composites. In Polymer Composites with Functionalized Nanoparticles; Elsevier: Amsterdam, 2019; pp 149–178. DOI: 10.1016/B978-0-12-814064-2.00005-6.
  • Lin, S. W.; Cheng, Y.-Y. Miscibility, Mechanical and Thermal Properties of Melt-Mixed Poly (Trimethylene Terephthalate)/Polypropylene Blends. Polym. Plast. Technol. Eng. 2009, 48, 827–833. DOI: 10.1080/03602550902994888.
  • Kusmono, Z. A.; Ishak, M.; Chow, W. S.; Takeichi, T. Rochmadi, Influence of SEBS-g-MA on Morphology, Mechanical, and Thermal Properties of PA6/PP/Organoclay Nanocomposites. Eur. Polym. J. 2008, 44, 1023–1039. DOI: 10.1016/j.eurpolymj.2008.01.019.
  • Chow, W. S.; Mohd Ishak, Z. A.; Karger-Kocsis, J.; Apostolov, A. A.; Ishiaku, U. S. Compatibilizing Effect of Maleated Polypropylene on the Mechanical Properties and Morphology of Injection Molded Polyamide 6/Polypropylene/Organoclay Nanocomposites. Polymer 2003, 44, 7427–7474. DOI: 10.1016/j.polymer.2003.09.006.
  • Chow, W. S.; Abu Bakar, A.; Mohd Ishak, Z. A.; Karger-Kocsis, J.; Ishiaku, U. S. Effect of Maleic Anhydride-Grafted Ethylene –Propylene Rubber on the Mechanical, Rheological and Morphological Properties of Organoclay Reinforced Polyamide 6/Polypropylene Nanocomposites. Eur. Polym. J. 2005, 41, 687–696. DOI: 10.1016/j.eurpolymj.2004.10.041.
  • Nazockdast, H. Morphology and Structure of Polymer Blends Containing Nanofillers. In Encyclopedia of Polymer Blends, Volume 3: Structure; Isayev, A.I., Ed.; John Wiley and Sons, Inc.: New York, 2016; pp 401–409
  • Avella, M.; Cosco, S.; Della, G.; Errico, M. E. Crystallization Behavior and Properties of Exfoliated Isotactic Polypropylene/Organoclay Nanocomposites. Adv. Polym. Technol. 2005, 24, 32–144. DOI: 10.1002/adv.20036.
  • Lin, Z. I.; Lou, C. W.; Pan, Y. J.; Hsieh, C. T.; Huang, C. L.; Chen, C. K.; Lin, J. H. PP/MWCNTs Composites: Effects of Length of MWCNTs on Isothermal Crystallization Behaviors, Crystalline Structure, and Thermal Stability. J. Compos. Mater. 2018, 52, 503–517. DOI: 10.1177/0021998317710084.
  • Hedge, R.; Spruiell, J. E.; Bhat, G. S. Investigation of the Morphology of Polypropylene − Nanoclay Nanocomposites. Polym. Int. 2014, 63, 1112–1121. DOI: 10.1002/pi.4623..
  • Zhao, S.; Chen, F.; Huang, Y.; Dong, J. Y.; Han, C. Crystallization Behaviors in the Isotactic Polypropylene/Graphene Composites. Polymer 2014, 16, 4125–4135. DOI: 10.1016/j.polymer.2014.06.027..
  • Pang, Y.; Dong, X.; Liu, K.; Han, C. C.; Chen, E.; Wang, D. Ductile-Brittle Transition Controlled by Isothermal Crystallization of Isotactic Polypropylene and Its Blend with Poly (Ethylene-co-Octene). Polymer 2008, 49, 4259–4270. DOI: 10.1016/j.polymer.2008.07.017.
  • Yu, C.; Jiang, C.; Chen, L.; Chen, Y. Fine Disperse Dyeable Polypropylene Fiber from Polypropylene/Polystyrene Nano-Ceria Blends. J. Appl. Polym. Sci. 2009, 113, 1953–1958. DOI: 10.1002/app.30198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.