164
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Preparation and Properties of BN/Si3N4/Epoxy Composites

, , , &
Pages 461-471 | Received 17 Dec 2019, Accepted 28 Dec 2020, Published online: 18 Dec 2020

References

  • Li, S.-H.; Yu, X.-X.; Bao, H.; Yang, N. High Thermal Conductivity of Bulk Epoxy Resin by Bottom-Up Parallel-Linking and Strain: A Molecular Dynamics Study. J. Phys. Chem. C. 2018, 122, 13140–13147. DOI: 10.1021/acs.jpcc.8b02001.
  • Tang, Y.-Y.; Zhao, F.-Q.; Fei, X.-M.; Wei, W.; Li, X.-J.; Luo, J.; Zhu, Y.; Liu, X.-Y. Noncovalent Functionalization of Carbon Nanotubes Using Branched Random Copolymer for Improvement of Thermal Conductivity and Mechanical Properties of Epoxy Thermosets. Polym. Int. 2018, 67, 1128–1136. DOI: 10.1002/pi.5622.
  • Jang, I.; Shin, K.-H.; Yang, I.; Kim, H.; Kim, J.; Kim, W.-H.; Jeon, S.-W.; Kim, J.-P. Enhancement of Thermal Conductivity of BN/Epoxy Composite through Surface Modification with Silane Coupling Agents. Colloid Surf. A. Physicochem. Eng. Asp. 2017, 518, 64–72. DOI: 10.1016/j.colsurfa.2017.01.011.
  • Zhu, D.-H.; Qi, Y.; Chen, L.-F.; Wang, M.-Z.; Xie, H.-Q. Enhanced Thermal Conductivity for Graphene Nanoplatelets/Epoxy Resin Composites. J. Therm. Sci. Eng. Appl. 2018, 10, 011011. DOI: 10.1115/1.4036796.
  • Gantayat, S.; Sarkar, N.; Prusty, G.; Rout, D.; Swain, S.-K. Designing of Epoxy Matrix by Chemically Modified Multiwalled Carbon Nanotubes. Adv. Polym. Technol. 2018, 37, 176–184. DOI: 10.1002/adv.21654.
  • Hussein, S.-I.; Abd-Elnaiem, A.-M.; Asafa, T.-B.; Jaafar, H.-I. Effect of Incorporation of Conductive Fillers on Mechanical Properties and Thermal Conductivity of Epoxy Resin Composite. Appl. Phys. A. 2018, 124, 475. DOI: 10.1007/s00339-018-1890-0.
  • Huang, C.-L.; Zhen, W.-K.; Huang, Z.; Luo, D.-C. Thermal and Electrical Conductivities of Epoxy Resin-Based Composites Incorporated with Carbon Nanotubes and TiO2 for a Thermoelectric Application. Appl. Phys. A. 2018, 124, 38. DOI: 10.1007/s00339-017-1467-3.
  • Yuan, W.-H.; Xiao, Q.-Q.; Li, L.; Xu, T. Thermal Conductivity of Epoxy Adhesive Enhanced by Hybrid Graphene Oxide/AlN Particles. Appl. Therm. Eng. 2016, 106, 1067–1074. DOI: 10.1016/j.applthermaleng.2016.06.089.
  • Sun, Y.; Tang, B.; Huang, W.; Wang, S.; Wang, Z.; Wang, X.; Zhu, Y.; Tao, C. Preparation of Graphene Modified Epoxy Resin with High Thermal Conductivity by Optimizing the Morphology of Filler. Appl. Therm. Eng. 2016, 103, 892–900. DOI: 10.1016/j.applthermaleng.2016.05.005.
  • Hutchinson, J.-M.; Roman, F.; Folch, A. Epoxy-Thiol Systems Filled with Boron Nitride for High Thermal Conductivity Applications. Polymers 2018, 10, 340. DOI: 10.3390/polym10030340.
  • Guo, L.-C.; Zhang, Z.-Y.; Kang, R.-Y.; Chen, Y.-P.; Hou, X.; Wu, Y.-M.; Wang, M.-J.; Wang, B.; Cui, J.-F.; Jiang, N.; et al. Enhanced Thermal Conductivity of Epoxy Composites Filled with Tetrapod-Shaped ZnO. RSC Adv. 2018, 8, 12337–12343. DOI: 10.1039/C8RA01470A.
  • Shen, D.-Y.; Zhan, Z.-L.; Liu, Z.-D.; Cao, Y.; Zhou, L.; Liu, Y.-L.; Dai, W.; Nishimura, K.; Li, C.-Y.; Lin, C.-T.; et al. Enhanced Thermal Conductivity of Epoxy Composites Filled with Silicon Carbide Nanowires. Sci. Rep. 2017, 7, 2606 DOI: 10.1038/s41598-017-02929-0.
  • Martin, G.-M.; Yuste, S.-V.; Sanchez, H.-R.; Verdejo, R.; Lopez, M.-M. Epoxy Nanocomposites Filled with Carbon Nanoparticles. Chem. Rec. 2018, 18, 928–939. DOI: 10.1002/tcr.201700095.
  • Na, T.-Y.; Liu, X.; Jiang, H.; Zhao, L.; Zhao, C.-J. Enhanced Thermal Conductivity of Fluorinated Epoxy Resins by Incorporating Inorganic Filler. React. Funct. Polym. 2018, 128, 84–90. DOI: 10.1016/j.reactfunctpolym.2018.05.004.
  • Feng, Y.-Z.; Hu, J.; Xue, Y.; He, C.-G.; Zhou, X.-P.; Xie, X.-L.; Ye, Y.-S.; Mai, Y.-W. Simultaneous Improvement in the Flame Resistance and Thermal Conductivity of Epoxy/Al2O3 Composites by Incorporating Polymeric Flame Retardant-Functionalized Graphene. J. Mater. Chem. A. 2017, 5, 13544–13556. DOI: 10.1039/C7TA02934A.
  • Sui, X.-Z.; Zhou, W.-Y.; Dong, L.-N.; Wang, Z.-J.; Wu, P.; Zuo, J.; Cai, H.-W.; Liu, X.-R. Epoxy Composites with Added Aluminum with Binary Particle Size Distribution for Enhanced Dielectric Properties and Thermal Conductivity. J. Electron. Mater. 2016, 45, 5974–5984. DOI: 10.1007/s11664-016-4834-5.
  • Liu, Z.; Li, J.-H.; Zhou, C.; Zhu, W.-H. A Molecular Dynamics Study on Thermal and Rheological Properties of BNNS-Epoxy Nanocomposites. Int. J. Heat Mass Transf. 2018, 126, 353–362. DOI: 10.1016/j.ijheatmasstransfer.2018.05.149.
  • Yung, K.-C.; Xu, T.; Choy, H.-S. Development of High Thermal Conductivity via BNNTs/Epoxy/organic-Si Hybrid Composite Systems. J. Mater. Sci. Mater. Electron. 2016, 27, 5217–5224. DOI: 10.1007/s10854-016-4416-6.
  • Isarn, I.; Ramis, X.; Ferrando, F.; Serra, A. Thermoconductive Thermosetting Composites Based on Boron Nitride Fillers and Thiol-Epoxy Matrices. Polymers 2018, 10, 277. DOI: 10.3390/polym10030277.
  • Saleem, A.; Zhang, J.-Y.; Gong, Y.-H.; Majeed, K.-M.; Ashfaq, Z.-M.; Jing, J.; Lin, X.; Sheng, M.-M. Carbon Nanostructure-Reinforced SiCw/Si3N4 Composite with Enhanced Thermal Conductivity and Mechanical Properties. RSC Adv. 2020, 10, ‏15023–15029. DOI: 10.1039/D0RA00876A.
  • Zakaria, M.-R.; Abdul, K. M. H.; Md. Akil, H.-M.; Thirmizir, M. Z. M. Comparative Study of Graphene Nanoparticle and Multiwall Carbon Nanotube Filled Epoxy Nanocomposites Based on Mechanical, Thermal and Dielectric Properties. Compos. B. Eng. 2017, 119, 57–66. DOI: 10.1016/j.compositesb.2017.03.023.
  • Wang, Z.-D.; Cheng, Y.-H.; Yang, M.-M.; Huang, J.-L.; Cao, D.-X.; Chen, S.-Y.; Xie, Q.; Lou, W.-X.; Wu, H.-J. Dielectric Properties and Thermal Conductivity of Epoxy Composites Using Core/Shell Structured Si/SiO2/Polydopamine. Compos. B. Eng. 2018, 140, 83–90. DOI: 10.1016/j.compositesb.2017.12.004.
  • Machrafi, H.; Lebon, G.; Iorio, C.-S. Effect of Volume-Fraction Dependent Agglomeration of Nanoparticles on the Thermal Conductivity of Nanocomposites: Applications to Epoxy Resins, Filled by SiO2, AlN and MgO Nanoparticles. Compos. Sci. Technol. 2016, 130, 78–87. DOI: 10.1016/j.compscitech.2016.05.003.
  • Liu, S.-Q.; Zhao, B.; Jiang, L.; Zhu, Y.-W.; Fu, X.-Z.; Sun, R.; Xu, J.-B.; Wong, C.-P. Core–Shell Cu@rGO Hybrids Filled in Epoxy Composites with High Thermal Conduction. J. Mater. Chem. C. 2018, 6, 257–265. DOI: 10.1039/C7TC04427E.
  • Kumar, R.; Nayak, S.-K.; Sahoo, S.; Panda, B.-P.; Mohanty, S.; Nayak, S.-K. Study on Thermal Conductive Epoxy Adhesive Based on Adopting Hexagonal Boron Nitride/Graphite Hybrids. J. Mater. Sci. Mater. Electron. 2018, 29, 16932–16938. DOI: 10.1007/s10854-018-9788-3.
  • Wu, Y.-C.; He, Y.-N.; Yu, Z.-Q.; Liu, X.-Y. Thermal Conductive Behavior of Zirconium Boride Coated by Nanoalumina with Different Mass Proportions in Epoxy Composites. Prog. Nat. Sci. 2018, 28, 345–353. DOI: 10.1016/j.pnsc.2018.04.012.
  • Weng, L.; Wang, H.-B.; Zhang, X.-R.; Liu, L.-Z.; Zhang, H.-X. Preparation and Properties of Boron Nitride/Epoxy Composites with High Thermal Conductivity and Electrical Insulation. J. Mater. Sci. Mater. Electron. 2018, 29, 14267–14276. DOI: 10.1007/s10854-018-9560-8.
  • Olowojoba, G.-B.; Kopsidas, S.; Eslava, S.; Gutierrez, E.-S.; Kinloch, A.-J.; Mattevi, C.; Rocha, V.-G.; Taylor, A.-C. A Facile Way to Produce Epoxy Nanocomposites Having Excellent Thermal Conductivity with Low Contents of Reduced Graphene oxide. J. Mater. Sci. 2017, 52, 7323–7344. DOI: 10.1007/s10853-017-0969-x.
  • Zhang, C.-X.; Li, T.-X.; Song, H.; Han, Y.-Q.; Dong, Y.-Y.; Wang, Y.-M.; Wang, Q. Improving the Thermal Conductivity and Mechanical Property of Epoxy Composites by Introducing Polyhedral Oligomeric Silsesquioxane-Grafted Graphene Oxide. Polym. Compos. 2018, 39, E1890–E1899. DOI: 10.1002/pc.24868.
  • Tagami, N.; Hyuga, M.; Ohki, Y.; Tanaka, T.; Imai, T.; Harada, M.; Ochi, M. Comparison of Dielectric Properties between Epoxy Composites with Nanosized Clay Fillers Modified by Primary Amine and Tertiary Amine. IEEE Trans. Dielect. Electr. Insul. 2010, 17, 214–220. DOI: 10.1109/TDEI.2010.5412020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.