167
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Remediation of Vanadium (V) and Chromium (III) Ions from Aqueous Media by Modified Nanocellulose Obtained from Coconut Coir

, &
Pages 500-520 | Received 25 Sep 2020, Accepted 26 Dec 2020, Published online: 03 Feb 2021

References

  • Farsi, A.; Javid, N.; Malakootian, M. Investigation of Adsorption Efficiency of Cu2+ and Zn2+ by Red Soil and Activated Bentonite from Acid Copper Mine Drainage. Desalin Water Treat. 2019, 144, 172–184. DOI: 10.5004/dwt.2019.23672.
  • Javid, N.; Malakootian, M. Removal of Bisphenol a from Aqueous Solutions by Modified-Carbonized Date Pits by ZnO Nano-Particles. Desalin Water Treat. 2017, 95, 144–151. DOI: 10.5004/dwt.2017.21592.
  • Honarmandrad, Z.; Javid, N.; Malakootian, M. Efficiency of Ozonation Process with Calcium Peroxide in Removing Heavy Metals (Pb, Cu, Zn, Ni, Cd) from Aqueous Solutions. SN Appl. Sci. 2020, 2, 1–7. DOI: 10.1007/s42452-020-2392-1.
  • Ritchie, H.; Roser, M. Clean Water. 2020. Published online at OurWorldInData.org.
  • Gummow, B. Vanadium: Environmental Pollution and Health Effects. Elsevier: Amerstradam, 2011.
  • Parasuraman, A.; Lim, T. M.; Menictas, C.; Kazacos, M. Z. Review of Material Research and Development for Vanadium Redox Flow Battery Applications. Electrochim. Acta 2013, 101, 27–40. DOI: 10.1016/j.electacta.2012.09.067.
  • Gerke, T. L.; Scheckel, K. G.; Maynard, J. B. Speciation and Distribution of Vanadium in Drinking Water Iron Pipe Corrosion by-Products. Sci. Total Environ. 2010, 408, 5845–5853. DOI: 10.1016/j.scitotenv.2010.08.036.
  • Korbecki, J.; Baranowska-Bosiacka, I.; Gutowska, I.; Chlubek, D. Biochemical and Medical Importance of Vanadium Compounds. Acta Biochim. Pol. 2012, 59, 195–200. DOI: 10.18388/abp.2012_2138.
  • Schwarz, K.; Milne, D. B. Growth Effects of Vanadium in the Rat. Science 1971, 174, 426–428. DOI: 10.1126/science.174.4007.426.
  • Wang, J. P.; He, K. R.; Ding, X. M.; Bai, S. P.; Zeng, Q. F.; Zhang, K. Y. Effect of Feeding and Withdrawal of Vanadium and Vitamin C on Egg Quality and Vanadium Residual over Time in Laying Hens. Biol. Trace Elem. Res. 2017, 177, 367–375. DOI: 10.1007/s12011-016-0887-9.
  • Roberts, G. K.; Stout, M. D.; Sayers, B.; Fallacara, D. M.; Hejtmancik, M. R.; Waidyanatha, S.; Hooth, M. J. 14-day Toxicity Studies of Tetravalent and Pentavalent Vanadium Compounds in Harlan Sprague Dawley Rats and B6C3F1/N Mice via Drinking Water Exposure. Toxicol. Rep. 2016, 3, 531–538. DOI: 10.1016/j.toxrep.2016.05.001.
  • Kumar, N.; Kardam, A.; Jain, V. K.; Nagpal, S. A Rapid, Reusable Polyaniline-Impregnated Nanocellulose Composite-Based System for Enhanced Removal of Chromium and Cleaning of Waste Water. Sep. Purif. Technol. 2020, 55, 1436–1448. DOI: 10.1080/01496395.2019.1600552.
  • Buttner, B.; Beyersmann, D. Modification of the Erythrocyte Anion Carrier by Chromate. Xenobiotica 1985, 15, 735–741. DOI: 10.3109/00498258509047435.
  • Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
  • Ucun, H.; Bayhan, Y. K.; Kaya, Y.; Cakici, A.; Algur, O. F. Biosorption of Chromium (VI) from Aqueous Solution by Cone Biomass of Pinus Sylvestris. Bioresour. Technol. 2002, 85, 155–158. DOI: 10.1016/S0960-8524(02)00086-X.
  • Jansson-Charrier, M.; Guibal, E.; Roussy, J.; Delanghe, B. P. L. E.; Le Cloirec, P. Vanadium (IV) Sorption by Chitosan: Kinetics and Equilibrium. Water Res. 1996, 30, 465–475. DOI: 10.1016/0043-1354(95)00154-9.
  • Daniel, A. B.; Zahir, E.; Hussain, I.; Naz, S.; Asghar, M. A. Citric Acid Modified Cellulose: A Cost Effective Adsorbent for the Immobilization of Cr (III) Ions from the Aqueous Phase. Energ. Source A 2020, 1–13. DOI: 10.1080/15567036.2020.1773963.
  • Nigam, M.; Rajoriya, S.; Singh, S. R.; Kumar, P. Adsorption of Cr (VI) Ion from Tannery Wastewater on Tea Waste: Kinetics, Equilibrium and Thermodynamics Studies. J. Environ. 2019, 7, 103188. DOI: 10.1016/j.jece.2019.103188.
  • Singh, K.; Arora, J. K.; Sinha, T. J. M.; Srivastava, S. Functionalization of Nanocrystalline Cellulose for Decontamination of Cr (III) and Cr (VI) from Aqueous System: Computational Modeling Approach. Clean Techn. Environ. Policy 2014, 16, 1179–1191. DOI: 10.1007/s10098-014-0717-8.
  • Jain, P.; Varshney, S.; Srivastava, S. Synthetically Modified Nano-Cellulose for the Removal of Chromium: A Green Nanotech Perspective. IET Nanobiotechnol. 2017, 11, 45–51. DOI: 10.1049/iet-nbt.2016.0036.
  • Sirviö, J. A.; Hasa, T.; Leiviskä, T.; Liimatainen, H.; Hormi, O. Bisphosphonate Nanocellulose in the Removal of Vanadium (V) from Water. Cellulose 2016, 23, 689–697. DOI: 10.1007/s10570-015-0819-4.
  • Ikhuoria, E. U.; Omorogbe, S. O.; Agbonlahor, O. G.; Etiuma, R. A. Nanocellulose Crystals from Coir Fibre for Template Application. Am. Chem. Sci. J. 2015, 9, 1–11. DOI: 10.9734/ACSJ/2015/18766.
  • Yang, S.; Xie, Q.; Liu, X.; Wu, M.; Wang, S.; Song, X. Acetylation Improves Thermal Stability and Transmittance in FOLED Substrates Based on Nanocellulose Films. RSC Adv. 2018, 8, 3619–3625. DOI: 10.1039/C7RA11134G.
  • Pyrzyn’Ska, K. Recent Developments in Spectrophotometric Methods for Determination of Vanadium. Microchim. Acta 2005, 149, 159–164. 10.1007/s00604-004-0304-5.
  • Ahmed, M. J.; Banoo, S. Spectrophotometric Method for Determination of Vanadium and Its Application to Industrial, Environmental, Biological and Soil Samples. Talanta 1999, 48, 1085–1094. DOI: 10.1016/S0039-9140(98)00329-4.
  • Shigematsu, T.; Gohda, S.; Yamazaki, H.; Nishikawa, Y. Spectrophotometric Determination of Chromium (III) and Chromium (VI) in Sea Water. Bull. Inst. Chem. Res. Kyoto Univ. 1978, 55, 429–440.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • Freundlich, H. About Adsorption in the Solution. J. Phys. Chem. A 1907, 57, 385–470. 10.1515/zpch-1907-5723.
  • Temkin, M. J.; Pyzhev, V. Recent Modifications to Langmuir Isotherms. Acta Physiochim. U.S.S.R 1940, 12, 217–222.
  • Dubinin, M. M. The Equation of the Characteristic Curve of Activated Charcoal. In. Dokl. Akad. Nauk. SSSR 1947, 55, 327–329.
  • Weber, T. W.; Chakravorti, R. K. Pore and Solid Diffusion Models for Fixed‐Bed Adsorbers. AIChE J. 1974, 20, 228–238. DOI: 10.1002/aic.690200204.
  • Hall, K. R.; Eagleton, L. C.; Acrivos, A.; Vermeulen, T. Pore-and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions. Ind. Eng. Chem. Fund. 1966, 5, 212–223. DOI: 10.1021/i160018a011.
  • Voudrias, E.; Fytianos, K.; Bozani, E. Sorption–Desorption Isotherms of Dyes from Aqueous Solutions and Wastewaters with Different Sorbent Materials. Global Nest. Int. J. 2002, 4, 75–83.
  • Dada, A. O.; Olalekan, A. P.; Olatunya, A. M.; Dada, O. J. I. J. C.; Langmuir, F. Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ unto Phosphoric Acid Modified Rice Husk. IOSRJAC 2012, 3, 38–45. DOI: 10.9790/5736-0313845.
  • Inam, E.; Etim, U. J.; Akpabio, E. G.; Umoren, S. A. Process Optimization for the Application of Carbon from Plantain Peels in Dye Abstraction. J. Taibah. Univ. Sci. 2017, 11, 173–185. DOI: 10.1016/j.jtusci.2016.01.003.
  • Lagergren, S. About the Theory of So-called Adsorption of Soluble Substances. Kungliga Svenska Vetenskapsakademiens Handlingar. 1898, 24, 1–39.
  • Ho, Y. S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Ritchie, A. G. Alternative to the Elovich Equation for the Kinetics of Adsorption of Gases on Solids. J. Chem. Soc. Faraday Trans. 1. 1977, 73, 1650–1653. DOI: 10.1039/f19777301650.
  • Austin, F. E.; Brown, J. G.; Dollimore, J.; Freedman, C. M.; Harrison, B. H. The Use of Partial-Pressure Mass Spectrometry in the Study of the Thermal Desorption and Oxidation of Carbon and Graphite. Analyst 1971, 96, 110–116. DOI: 10.1039/an9719600110.
  • Bansal, R. C.; Vastola, F. J.; Walker, P. L. Jr. Studies on Ultra-Clean Carbon Surfaces—III. Kinetics of chemisorption of hydrogen on graphon. Carbon 1971, 9, 185–192. https://doi.org/10.1016/0008-6223. (71)90130-8 DOI: 10.1016/0008-6223(71)90130-8.
  • Mandal, A.; Chakrabarty, D. Isolation of Nanocellulose from Waste Sugarcane Bagasse (SCB) and Its Characterization. Carbohydr. Polym. 2011, 86, 1291–1299. DOI: 10.1016/j.carbpol.2011.06.030.
  • Madivoli, E. S.; Kareru, P. G.; Gachanja, A. N.; Mugo, S.; Murigi, M. K.; Kairigo, P. K.; Kipyegon, C.; Mutembei, J. K.; Njonge, F. K. Adsorption of Selected Heavy Metals on Modified Nano Cellulose. Int. Res. J. Pure Appl. Chem. 2016, 12, 1–9. DOI: 10.9734/IRJPAC/2016/28548.
  • Barbosa, R. F. S.; Souza, A. G.; Ferreira, F. F.; Rosa, D. S. Isolation and Acetylation of Cellulose Nanostructures with a Homogeneous System. Carbohydr. Polym. 2019, 218, 208–217. DOI: 10.1016/j.carbpol.2019.04.072.
  • Wang, Q.; Yu, D. G.; Zhang, L. L.; Liu, X. K.; Deng, Y. C.; Zhao, M. Electrospun Hypromellose-Based Hydrophilic Composites for Rapid Dissolution of Poorly Water-Soluble Drug. Carbohydr. Polym. 2017, 174, 617–625. DOI: 10.1016/j.carbpol.2017.06.075.
  • Alemdar, A.; Sain, M. Isolation and Characterization of Nanofibers from Agricultural Residues: Wheat Straw and Soy Hulls. Bioresour. Technol. 2008, 99, 1664–1671. DOI: 10.1016/j.biortech.2007.04.029.
  • Ramírez, J. A. Á.; Hoyos, C. G.; Arroyo, S.; Cerrutti, P.; Foresti, M. L. Acetylation of Bacterial Cellulose Catalyzed by Citric Acid: Use of Reaction Conditions for Tailoring the Esterification Extent. Carbohydr. Polym. 2016, 153, 686–695. DOI: 10.1016/j.carbpol.2016.08.009.
  • Kajjumba, G. W.; Aydın, S.; Güneysu, S. Adsorption Isotherms and Kinetics of Vanadium by Shale and Coal Waste. Adsorpt. Sci. Technol. 2018, 36, 936–952. DOI: 10.1177/0263617417733586.
  • Erdem, Y.; A.; Yayayürük, O. Adsorptive Performance of Nanosized Zero‐Valent Iron for V (V) removal from Aqueous Solutions. J. Chem. Technol. Biotechnol. 2017, 92, 1891–1898. DOI: 10.1002/jctb.5209.
  • Qian, S.; Wang, H.; Huang, G.; Mo, S.; Wei, W. Studies of Adsorption Properties of Crosslinked Chitosan for Vanadium (V), Tungsten (VI). J. Appl. Polym. Sci. 2004, 92, 1584–1588. DOI: 10.1002/app.20102.
  • Jain, P.; Varshney, S.; Srivastava, S. Site-Specific Functionalization for Chemical Speciation of Cr (III) and Cr (VI) Using Polyaniline Impregnated Nanocellulose Composite: Equilibrium, Kinetic, and Thermodynamic Modeling. Appl. Water Sci. 2017, 7, 1827–1839. DOI: 10.1007/s13201-015-0356-1.
  • Gogoi, S.; Chakraborty, S.; Saikia, M. D. Surface Modified Pineapple Crown Leaf for Adsorption of Cr (VI) and Cr (III) Ions from Aqueous Solution. J. Environ. 2018, 6, 2492–2501. DOI: 10.1016/j.jece.2018.03.040.
  • Abdić, Š.; Memić, M.; Šabanović, E.; Sulejmanović, J.; Begić, S. Adsorptive Removal of Eight Heavy Metals from Aqueous Solution by Unmodified and Modified Agricultural Waste: Tangerine Peel. Int. J. Environ. Sci. Technol. 2018, 15, 2511–2518. DOI: 10.1007/s13762-018-1645-7.
  • Liu, L. L.; Xing, Y.; Yu, H. Y.; Zhang, C. W.; Ye, M. Q.; Miao, M. Z.; Yu, C. X. Effective Removal of Chromium (III) from Low Concentration Aqueous Solution Using a Novel Diazene/Methoxy-Laced Coordination Polymer. Polymers 2017, 9, 273. DOI: 10.3390/polym9070273.
  • Liao, X.; Tang, W.; Zhou, R.; Shi, B. Adsorption of Metal Anions of Vanadium(V) and Chromium(VI) on Zr(IV)-Impregnated Collagen Fiber. Adsorption 2008, 14, 55–64. DOI: 10.1007/s10450-007-9045-.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.