188
Views
8
CrossRef citations to date
0
Altmetric
Research Article

In-vitro Degradation Behaviors of Poly(L-lactide-co-glycolide-co-ε-caprolactone) Microspheres

, , , , , , , , & show all
Pages 521-529 | Received 07 Nov 2020, Accepted 01 Jan 2021, Published online: 02 Feb 2021

References

  • Maitz, M. F. Applications of Synthetic Polymers in Clinical Medicine. Biosurf. Biotribol. 2015, 1, 161–176. DOI: 10.1016/j.bsbt.2015.08.002.
  • Yan, H.; Zhou, Z.; Huang, T.; Peng, C.; Liu, Q.; Zhou, H.; Zeng, W.; Liu, L.; Ou, B.; He, S.; Huang, H. Controlled Release in Vitro of Icariin from Gelatin/Hyaluronic Acid Composite Microspheres. Polym. Bull. 2016, 73, 1055–1066. DOI: 10.1007/s00289-015-1534-x.
  • Young, S.; Wong, M.; Tabata, Y.; Mikos, A. G. Gelatin as a Delivery Vehicle for the Controlled Release of Bioactive Molecules. J. Control Release. 2005, 109, 256–274. DOI: 10.1016/j.jconrel.2005.09.023.
  • Zhou, Z.; Wu, W.; Fang, J.; Yin, J. Polymer-Based Porous Microcarriers as Cell Delivery Systems for Applications in Bone and Cartilage Tissue Engineering. Int. Mater. Rev. 2021, 66, 77–113. DOI: 10.1080/09506608.2020.1724705.
  • Nair, L. S.; Laurencin, C. T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • Sokolsky-Papkov, M.; Agashi, K.; Olaye, A.; Shakesheff, K.; Domb, A. J. Polymer Carriers for Drug Delivery in Tissue Engineering. Adv. Drug Deliv. Rev.. 2007, 59, 187–206. DOI: 10.1016/j.addr.2007.04.001.
  • Zhou, Z.; He, S.; Huang, T.; Peng, C.; Zhou, H.; Liu, Q.; Zeng, W.; Liu, L.; Huang, H.; Xiang, L.; Yan, H. Preparation of Gelatin/Hyaluronic Acid Microspheres with Different Morphologies for Drug Delivery. Polym. Bull. 2015, 72, 713–723. DOI: 10.1007/s00289-015-1300-0.
  • Manavitehrani, I.; Fathi, A.; Badr, H.; Daly, S. N.; Shirazi, A. N.; Dehghani, F. Biomedical Applications of Biodegradable Polyesters. Polymers 2016, 8, 20. DOI: 10.3390/polym8010020.
  • Ulery, B. D.; Nair, L. S.; Laurencin, C. T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. B Polym. Phys.. 2011, 49, 832–864. DOI: 10.1002/polb.22259.
  • Jamshidian, M.; Tehrany, E. A.; Imran, M.; Jacquot, M.; Desobry, S. Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. Food Saf 2010, 9, 552–571. DOI: 10.1111/j.1541-4337.2010.00126.x.
  • Hamad, K.; Kaseem, M.; Yang, H. W.; Deri, F.; Ko, Y. G. Properties and Medical Applications of Polylactic Acid: A Review. Express Polym. Lett. 2015, 9, 435–455. DOI: 10.3144/expresspolymlett.2015.42.
  • Aguado, M. T.; Lambert, P. H. Controlled-Release Vaccines-Biodegradable Polylactide/Polyglycolide (PL/PG) Microspheres as Antigen Vehicles. Immunobiology 1992, 184, 113–125. DOI: 10.1016/S0171-2985(11)80470-5.
  • Dhanaraju, M. D.; Gopinath, D.; Ahmed, M. R.; Jayakumar, R.; Vamsadhara, C. Characterization of Polymeric poly(epsilon-caprolactone) injectable implant delivery system for the controlled delivery of contraceptive steroids. J. Biomed. Mater. Res. A. 2006, 76, 63–72. DOI: 10.1002/jbm.a.30458.
  • Aberturas, M. R.; Molpeceres, J.; Guzman, M.; Garcia, F. Development of a New Cyclosporine Formulation Based on Poly(Caprolactone) Microspheres. J. Microencapsul. 2002, 19, 61–72. DOI: 10.1080/02652040110055270.
  • Sastre, R. L.; Blanco, M. D.; Teijón, C.; Olmo, R.; Teijón, J. M. Preparation and Characterization of 5-Fluoruracil-Loaded Poly (ε-Caprolactone) Microspheres for Drug Administration. Drug Dev. Res. 2004, 63, 41–53. DOI: 10.1002/ddr.10396.
  • Chawla, J. S.; Amiji, M. M. Biodegradable poly(epsilon -caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. 2002, 249, 127–138. DOI: 10.1016/s0378-5173(02)00483-0.
  • Makadia, H. K.; Siegel, S. J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers. (Basel) 2011, 3, 1377–1397. DOI: 10.3390/polym3031377.
  • Fu, K.; Pack, D. W.; Klibanov, A. M.; Langer, R. Visual Evidence of Acidic Environment within Degrading Poly(Lactic-co-Glycolic Acid) (PLGA) Microspheres. Pharm. Res. 2000, 17, 100–106. DOI: 10.1023/A:1007582911958.
  • Suuronen, R.; Pohjonen, T.; Hietanen, J.; Lindqvist, C. A 5-Year in Vitro and in Vivo Study of the Biodegradation of Polylactide Plates. J. Oral Maxillofac. Surg. 1998, 56, 604–614. DOI: 10.1016/S0278-2391(98)90462-1.
  • Zhou, Z.; Huang, H.; Huang, T.; Peng, C.; Zhou, H.; Liu, Q.; Zeng, W.; Liu, L.; Cao, D.; He, S.; et al. Synthesis and Characterization of Novel Maleated Poly(D,L-Lactide-co-Glycolide) by Direct Melt Copolymerization. Polym. Bull. 2015, 72, 1531–1543. DOI: 10.1007/s00289-015-1354-z.
  • Cui, J.; Zhou, Z.; Yang, Y.; Liu, W.; Zhao, Y.; Peng, C.; Huang, T.; Zhou, H.; Liu, L.; Zhang, Q. Synthesis, Characterization, and Degradation Behaviors of Poly(D,L-Lactide-co-Glycolide) Modified by Maleic Anhydride and Ethanediamine. Int. J. Polym. Anal. Ch 2017, 22, 575–586. DOI: 10.1080/1023666X.2017.1344819.
  • Zhang, Q.; Fang, J.; Liu, W.; Zhao, Y.; Huang, T.; Cui, J.; Yang, Y.; Zhou, Z. Synthesis and Characterization of Poly(D,L-Lactide-co-Glycolide) Modified by Maleic Anhydride and 1,4-Butanediamine. Int. J. Polym. Anal. Ch. 2018, 23, 474–482. DOI: 10.1080/1023666X.2018.1478618.
  • Wu, W.; Fang, J. J.; Liu, W.; Zhao, Y. H.; Huang, T. L.; Zhao, Y. M.; Li, X. F.; Cui, J. L.; Yang, Y.; Zhou, Z. H. Preparation and Properties of BMPLGA/NBAG-β-TCP Composite Scaffold Materials. Int. J. Polym. Anal. Ch 2018, 23, 710–720. 2018.1499275. DOI: 10.1080/1023666X.
  • Márquez, Y.; Cabral, T.; Lorenzetti, A.; Franco, L.; Turon, P.; del Valle, L. J.; Puiggalí, J. Incorporation of Biguanide Compounds into Poly(GL)-b-Poly(GL-co-TMC-co-CL)-b-Poly(GL) Monofilament Surgical Sutures. Mater Sci Eng C Mater Biol Appl ... 2017, 71, 629–640. DOI: 10.1016/j.msec.2016.10.049.
  • Ding, A. G.; Schwendeman, S. P. Determination of Water-Soluble Acid Distribution in Poly(Lactide-co-Glycolide). J. Pharm. Sci. 2004, 93, 322–331. DOI: 10.1002/jps.10524.
  • von Burkersroda, F.; Schedl, L.; Göpferich, A. Why Degradable Polymers Undergo Surface Erosion or Bulk Erosion. Biomaterials 2002, 23, 4221–4231. DOI: 10.1016/S0142-9612(02)00170-9.
  • Chen, D. R.; Bei, J. Z.; Wang, S. G. Polycaprolactone Microparticles and Their Biodegradation. Polym. Degrad. Stab 2000, 67, 455–459. DOI: 10.1016/S0141-3910(99)00145-7.
  • Yang, Y.; Liu, W. J.; Fang, J. J.; Zhao, Y. H.; Zhao, Y. M.; Huang, T. L.; Cui, J. L.; Wu, W.; Li, X. F.; Zhou, Z. H. Synthesis and Characterization of Terpolymers of Poly(L- Lactide-Glycolide-ε-Caprolactone). J. Macromol. Sci. Part B Phys. 2018, 57, 562–571. DOI: 10.1080/00222348.2018.1493171.
  • Wu, W.; Zhou, Z. H.; Liu, W. J.; Zhao, Y. H.; Zhao, Y. M.; Huang, T. L.; Li, X. F.; Fang, J. J. Preparation and in-Vitro Degradation Behavior of Poly(L-Lactide-co-Glycolide-co-ε-Caprolactone) Terpolymer. J. Macromol. Sci. Part B Phys. 2019, 58, 568–577. DOI: 10.1080/00222348.2019.1601809

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.