73
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Interrelation Between Ionic Conduction and Ions Fraction of Biopolymer Electrolytes Based on Alginate Doped With NH4Cl

, , &
Pages 631-646 | Received 17 Sep 2020, Accepted 05 Feb 2021, Published online: 15 Apr 2021

References

  • Singh, R.; Polu, A. R.; Bhattacharya, B.; Rhee, H. W.; Varlikli, C.; Singh, P. K. Perspectives for Solid Biopolymer Electrolytes in Dye Sensitized Solar Cell and Battery Application. Renew. Sustain. Energy Rev. 2016, 65, 1098–1117. DOI: 10.1016/j.rser.2016.06.026.
  • Chai, M. N.; Isa, M. 2011. Carboxyl Methylcellulose Solid Polymer Electrolytes: Ionic Conductivity and Dielectric Study. Int. J. Curr. Eng. Sci. Res. 1, 23–27. https://www.researchgate.net/publication/275643544_Carboxyl_methylcellulose_solid_polymer_electrolytes_Ionic_conductivity_and_dielectric_study.
  • Warner, J. Lithium-Ion Battery Chemistries: A Primer. Elsevier: Amsterdam, 2019; pp 43–77. DOI: 10.1016/b978-0-12-814778-8.00003-x.
  • Shukur, M. F.; Kadir, M. F. Z. Electrical and Transport Properties of NH4Br-Doped Cornstarch-Based Solid Biopolymer Electrolyte. Ionics 2015, 21, 111–124. DOI: 10.1007/s11581-014-1157-5.
  • Salleh, N. S.; Aziz, S. B.; Aspanut, Z.; Kadir, M. F. Z. Electrical Impedance and Conduction Mechanism Analysis of Biopolymer Electrolytes Based on Methyl Cellulose Doped with Ammonium Iodide. Ionics 2016, 22, 2157–2167. DOI: 10.1007/s11581-016-1731-0.
  • Yamada, M.; Honma, I. A Biopolymer Composite Material as an Anhydrous Proton-Conducting Membrane. Angew. Chem. Int. Ed. Engl. 2004, 43, 3688–3691. DOI: 10.1002/anie.200353176.
  • Nik Aziz, N. A.; Idris, N. K.; Isa, M. I. N. Solid Polymer Electrolytes Based on Methylcellulose: FT-IR and Ionic Conductivity Studies. Int. J. Polym. Anal. Charact. 2010, 15, 319–327. DOI: 10.1080/1023666X.2010.493291.
  • Rani, M. S. A.; Mohamed, N. S.; Isa, M. I. N. Investigation of the Ionic Conduction Mechanism in Carboxymethyl Cellulose/Chitosan Biopolymer Blend Electrolyte Impregnated with Ammonium Nitrate. Int. J. Polym. Anal. Charact. 2015, 20, 491–503. DOI: 10.1080/1023666X.2015.1050803.
  • Ramesh, S.; Liew, C.; Arof, A. Ion Conducting Corn Starch Biopolymer Electrolytes Doped with Ionic Liquid 1-Butyl-3-Methylimidazolium Hexafluorophosphate. J. Non. Cryst. Solids 2011, 357, 3654–3660. DOI: 10.1016/j.jnoncrysol.2011.06.030.
  • Fuzlin, A. F.; Saadiah, M. A.; Yao, Y.; Nagao, Y.; Samsudin, A. S. Enhancing Proton Conductivity of Sodium Alginate Doped with Glycolic Acid in Bio-Based Polymer Electrolytes System. J. Polym. Res. 2020, 27, 1–16. DOI: 10.1007/s10965-020-02142-0.
  • Zeng, F.; Sun, Y.; Hui, B.; Xia, Y.; Zou, Y.; Zhang, X.; Yang, D. Three-Dimensional Porous Alginate Fiber Membrane Reinforced PEO-Based Solid Polymer Electrolyte for Safe and High-Performance Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 43805–43812. DOI: 10.1021/acsami.0c13039.
  • Singh, R.; Jadhav, N.; Majumder, S.; Bhattacharya, B.; Singh, P. K. Novel Biopolymer Gel Electrolyte for Dye-Sensitized Solar Cell Application. Carbohydr. Polym. 2013, 91, 682–685. DOI: 10.1016/j.carbpol.2012.08.055.
  • Aravamudhan, A.; Ramos, D.; Nada, A.; Kumbar, S. G. 2014. In Natural Polymers: Polysaccharides and Their Derivatives for Biomedical Applications. Elsevier: Amsterdam. 67–89 DOI: 10.1016/b978-0-12-396983-5.00004-1.
  • Hafiza, M. N.; Bashirah, A. N. A.; Bakar, N. Y.; Isa, M. I. N. Electrical Properties of Carboxyl Methylcellulose/Chitosan Dual-Blend Green Polymer Doped with Ammonium Bromide. Int. J. Polym. Anal. Charact. 2014, 19, 151–158. DOI: 10.1080/1023666X.2014.873562.
  • Salman, Y. A. K.; Abdullah, O. G.; Hanna, R. R.; Aziz, S. B. Conductivity and Electrical Properties of Chitosan-Methylcellulose Blend Biopolymer Electrolyte Incorporated with Lithium Tetrafluoroborate. Int. J. Electrochem. Sci 2018, 13, 3185–3199. DOI: 10.20964/2018.04.25.
  • Johnson, F.; Craig, D.; Mercer, A.; Chauhan, S. The Effects of Alginate Molecular Structure and Formulation Variables on the Physical Characteristics of Alginate Raft Systems. Int. J. Pharm 1997, 159, 35–42. doi: https://doi.org/10.1016/s0378-5173. (97)00266-4. DOI: 10.1016/S0378-5173(97)00266-4.
  • Reis, R.; Neves, N.; Mano, J.; Gomes, M.; and A. Marques, 2008. Natural-Based Polymers for Biomedical Applications. Elsevier: Amsterdam. xxiii–xxxxv. DOI: 10.1016/b978-1-84569-264-3.50034-2.
  • Shaari, N.; Kamarudin, S. K.; Basri, S.; Shyuan, L. K.; Masdar, M. S.; Nordin, D. Enhanced Mechanical Flexibility and Performance of Sodium Alginate Polymer Electrolyte Bio-Membrane for Application in Direct Methanol Fuel Cell. J. Appl. Polym. Sci. 2018, 135, 46666. DOI: 10.1002/app.46666.
  • Skaugrud, Ø.; Hagen, A.; Borgersen, B.; Dornish, M. Biomedical and Pharmaceutical Applications of Alginate and Chitosan. Biotechnol. Genet. Eng. Rev. 1999, 16, 23–40. DOI: 10.1080/02648725.1999.10647970.
  • Liu, L. S.; Kost, J.; Yan, F.; Spiro, R. C. Hydrogels from Biopolymer Hybrid for Biomedical, Food, and Functional Food Applications. Polymers 2012, 4, 997–1011. DOI: 10.3390/polym4020997.
  • Axpe, E.; Oyen, M. L. Molecular Sciences Applications of Alginate-Based Bioinks in 3D Bioprinting. IJMS 2016, 17, 1976. DOI: 10.3390/ijms17121976.
  • Rajendran, S.; Mahendran, O.; Mahalingam, T. Thermal and Ionic Conductivity Studies of Plasticized PMMA/PVdF Blend Polymer Electrolytes. Eur. Polym. J. 2002, 38, 49–55. doi: https://doi.org/10.1016/s0014-3057. (01)00140-9. DOI: 10.1016/S0014-3057(01)00140-9.
  • Ahmad, N.; Isa, M. Characterization of un-Plasticized and Propylene Carbonate Plasticized Carboxymethyl Cellulose Doped Ammonium Chloride Solid Biopolymer Electrolytes. Carbohydr. Polym. 2016, 137, 426–432. DOI: 10.1016/j.carbpol.2015.10.092.
  • Ahmad, A.; Rahman, M.; Low, S.; Hamzah, H. Effect of LiBF4 Salt Concentration on the Properties of Plasticized MG49-TiO2 Based Nanocomposite Polymer Electrolyte. ISRM Mater. Sci 2011, 2011, 1–7. DOI: 10.5402/2011/401280.
  • Nies And, C. W.; Messing, G. L. Effect of Glass‐Transition Temperature of Polyethylene Glycol‐Plasticized Polyvinyl Alcohol on Granule Compaction. J. Am. Ceram. Soc. 2006, 67, 301–304. DOI: 10.1111/j.1151-2916.1984.tb18852.x.
  • Frech, R.; Chintapalli, S. Effect of Propylene Carbonate as a Plasticizer in High Molecular Weight PEO-LiCF3SO3 Electrolytes. Solid State Ion 1996, 85, 61–66. DOI: 10.1016/0167-2738(96)00041-0.
  • Wang, Z.; Huang, B.; Huang, H.; Xue, R.; Chen, L.; Wang, F. A Vibrational Spectroscopic Study on the Interaction between Lithium Salt and Ethylene Carbonate Plasticizer for PAN‐Based Electrolytes. J. Electrochem. Soc. 1996, 143, 1510–1514. DOI: 10.1149/1.1836671.
  • Ramesh, S.; Chai, M. Conductivity, Dielectric Behavior and FTIR Studies of High Molecular Weight Poly (Vinylchloride)–Lithium Triflate Polymer Electrolytes. Mater. Sci. Eng 2007, 139, 240–245. DOI: 10.1016/j.mseb.2007.03.003.
  • Sartori, C.; Finch, D.; Ralph, B.; Gilding, K. Determination of the Cation Content of Alginate Thin Films by FTi.r. spectroscopy. Polymer 1997, 38, 43–51. DOI: 10.1016/S0032-3861(96)00458-2.
  • Rasali, N. M. J.; Saadiah, M. A.; Zainuddin, N. K.; Nagao, Y.; Samsudin, A. S. Ionic Transport Studies of Solid Bio-Polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Ammonium Acetate and Its Potential Application as an Electrical Double Layer Capacitor. Express Polym. Lett. 2020, 14, 619–637. DOI: 10.3144/expresspolymlett.2020.51.
  • Papageorgiou, S. K.; Kouvelos, E. P.; Favvas, E. P.; Sapalidis, A. A.; Romanos, G. E.; Katsaros, F. K. Metal-Carboxylate Interactions in Metal-Alginate Complexes Studied with FTIR Spectroscopy. Carbohydr. Res. 2010, 345, 469–473. DOI: 10.1016/j.carres.2009.12.010.
  • Rasali, N. M. J.; Nagao, Y.; Samsudin, A. S. Enhancement on Amorphous Phase in Solid Biopolymer Electrolyte Based Alginate Doped NH4NO3. Ionics 2019, 25, 641–654. DOI: 10.1007/s11581-018-2667-3.
  • Selvalakshmi, S.; Vijaya, N.; Selvasekarapandian, S.; Premalatha, M. Biopolymer Agar-Agar Doped with NH4SCN as Solid Polymer Electrolyte for Electrochemical Cell Application. J. Appl. Polym. Sci. 2017, 134, 44702. DOI: 10.1002/app.44702.
  • Fuzlin, A.; Bakri, N.; Sahraoui, B.; Samsudin, A. Study on the Effect of Lithium Nitrate in Ionic Conduction Properties Based Alginate Biopolymer Electrolytes. Mater. Res. Express 2019, 7, 015902. DOI: 10.1088/2053-1591/ab57bb.
  • Mazuki, N.; Majeed, A.; Nagao, Y.; Samsudin, A. S. Studies on Ionics Conduction Properties of Modification CMC-PVA Based Polymer Blend Electrolytes via Impedance Approach. Polym. Test 2020, 81, 106234. DOI: 10.1016/j.polymertesting.2019.106234.
  • Bakar, N.; Isa, M. Potential of Ionic Conductivity and Transport Properties Solid Biopolymer Electrolytes Based Carboxy Methylcellulose/Chitosan Polymer Blend Doped with Dodecyltrimethyl Ammonium Bromide. Res. J. Recent Sci. 2014, 3, 69–74. https://www.researchgate.net/publication/277005118_Potential_of_Ionic_Conductivity_and_Transport_Properties_Solid_Biopolymer_Electrolytes_Based_Carboxy_Methylcellulose_Chitosan_Polymer_Blend_Doped_with_Dodecyltrimethyl_Ammonium_Bromide.
  • Samsudin, A.; Saadiah, M. Ionic Conduction Study of Enhanced Amorphous Solid Bio-Polymer Electrolytes Based Carboxymethyl Cellulose Doped NH4Br. J. Non. Cryst. Solids 2018, 497, 19–29. DOI: 10.1016/j.jnoncrysol.2018.05.027.
  • Selvalakshmi, S.; Mathavan, T.; Selvasekarapandian, S.; Premalatha, M. Effect of Ethylene Carbonate Plasticizer on Agar-Agar: NH4Br-Based Solid Polymer Electrolytes. Ionics 2018, 24, 2209–2217. DOI: 10.1007/s11581-017-2417-y.
  • Ikmar Nizam Mohamad Isa, M.; Amirullah Ramlli, M.; Min, I. 2015. Conductivity study of Carboxyl methyl cellulose Solid biopolymer electrolytes (SBE) doped with Ammonium Fluoride. Res. J. Recent Sci. ISSN 2277, 2502. https://www.researchgate.net/publication/277005750_Conductivity_study_of_Carboxyl_methyl_cellulose_Solid_biopolymer_electrolytes_SBE_doped_with_Ammonium_Fluoride.
  • Rajendran, S.; Sivakumar, P. An Investigation of PVdF/PVC-Based Blend Electrolytes with EC/PC as Plasticizers in Lithium Battery Applications. Physica B Condens. Matter 2008, 403, 509–516. DOI: 10.1016/j.physb.2007.06.012.
  • Kadir, M.; Majid, S.; Arof, A. Plasticized Chitosan–PVA Blend Polymer Electrolyte Based Proton Battery. Electrochim. Acta 2010, 55, 1475–1482. DOI: 10.1016/j.electacta.2009.05.011.
  • Shukur, M.; Ithnin, R.; Illias, H.; Kadir, M. Proton Conducting Polymer Electrolyte Based on Plasticized Chitosan–PEO Blend and Application in Electrochemical Devices. Opt. Mater. 2013, 35, 1834–1841. DOI: 10.1016/j.optmat.2013.03.004.
  • Qian, X.; Gu, N.; Cheng, Z.; Yang, X.; Wang, E.; Dong, S. Plasticizer Effect on the Ionic Conductivity of PEO-Based Polymer Electrolyte. Mater. Chem. Phys. 2002, 74, 98–103. doi: https://doi.org/10.1016/s0254-0584. (01)00408-4. DOI: 10.1016/S0254-0584(01)00408-4.
  • Isa, M. I. N.; Samsudin, A. S. Potential Study of Biopolymer-Based Carboxymethylcellulose Electrolytes System for Solid-State Battery Application. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 561–567. DOI: 10.1080/00914037.2016.1149844.
  • Prajapati, G.; Roshan, R.; Gupta, P. Effect of Plasticizer on Ionic Transport and Dielectric Properties of PVA–H3PO4 Proton Conducting Polymeric Electrolytes. J. Phys. Chem. 2010, 71, 1717–1723. DOI: 10.1016/j.jpcs.2010.08.023.
  • Khiar, A.; Puteh, R.; Arof, A. Conductivity Studies of a Chitosan-Based Polymer Electrolyte. Physica B Condens. Matter 2006, 373, 23–27. DOI: 10.1016/j.physb.2005.10.104.
  • Masoud, E.; El-Bellihi, A.; Bayoumy, W.; Mousa, M. Organic–Inorganic Composite Polymer Electrolyte Based on PEO–LiClO4 and nano-Al2O3 Filler for Lithium Polymer Batteries: Dielectric and Transport Properties. J. Alloys Compd. 2013, 575, 223–228. DOI: 10.1016/j.jallcom.2013.04.054.
  • Barde, R. V.; Nemade, K. R.; Waghuley, S. A. AC Conductivity and Dielectric Relaxation in V2O5-P2O5-B2O3 Glasses. J. Asian Ceram. Soc. 2015, 3, 116–122. DOI: 10.1016/j.jascer.2014.11.006.
  • Yusuf, S.; Azzahari, A.; Yahya, R.; Majid, S. R.; Careem, M. A.; Arof, A. K. From Crab Shell to Solar Cell: A Gel Polymer Electrolyte Based on N-Phthaloylchitosan and Its Application in Dye-Sensitized Solar Cells. RSC Adv. 2016, 6, 27714–27724. DOI: 10.1039/C6RA04188D.
  • Mejenom, A. A.; Hafiza, M. N.; Isa, M. I. N. X-Ray Diffraction and Infrared Spectroscopic Analysis of Solid Biopolymer Electrolytes Based on Dual Blend Carboxymethyl Cellulose-Chitosan Doped with Ammonium Bromide. ASM Sci. J., Special Issue 2018, 11, 37–46.
  • Aziz, N. A.; Majid, S. R.; Arof, A. K. Synthesis and Characterizations of Phthaloyl Chitosan-Based Polymer Electrolytes. J. Non. Cryst. Solids 2012, 358, 1581–1590. DOI: 10.1016/j.jnoncrysol.2012.04.019.
  • Chai, M. N.; Isa, M. I. N. Novel Proton Conducting Solid Bio-Polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol. Carbohydr. Polym. 2016, 6, 1–7. DOI: 10.1038/srep27328.
  • Samsudin, A. S.; Khairul, W. M.; Isa, M. I. N. Characterization on the Potential of Carboxy Methylcellulose for Application as Proton Conducting Biopolymer Electrolytes. J. Non. Cryst. Solids 2012, 358, 1104–1112. DOI: 10.1016/j.jnoncrysol.2012.02.004.
  • Mazuki, N. F.; Fuzlin, A. F.; Saadiah, M. A.; Samsudin, A. S. An Investigation on the Abnormal Trend of the Conductivity Properties of CMC/PVA-Doped NH4Cl-Based Solid Biopolymer Electrolyte System. Ionics 2019, 25, 2657–2667. DOI: 10.1007/s11581-018-2734-9.
  • Ning, W.; Xingxiang, Z.; Haihui, L.; Benqiao, H. 1-Allyl-3-Methylimidazolium Chloride Plasticized-Corn Starch as Solid Biopolymer Electrolytes. Carbohydr. Polym. 2009, 76, 482–484. DOI: 10.1016/j.carbpol.2008.11.005.
  • Fadzallah, I.; Majid, S.; Careem, M. A.; Arof, A. K. A Study on Ionic Interactions in Chitosan–Oxalic Acid Polymer Electrolyte Membranes. J. Membr. Sci. 2014, 463, 65–72. DOI: 10.1016/j.memsci.2014.03.044.
  • Ritthidej, G.; Phaechamud, T.; Koizumi, T. Moist Heat Treatment on Physicochemical Change of Chitosan Salt Films. Int. J. Pharm. 2002, 232, 11–22. DOI: 10.1016/s0378-5173(01)00894-8.
  • Sohaimy, M. Structural, Electrical and Ion Transport Properties of Natural Polymer Based Carboxylmethyl Cellulose Doped Ammonium Carbonate. Universiti Malaysia Terengganu, 2017. Unplublished Doctoral's thesis
  • Ramlli, M. A.; Isa, M. I. N. Structural and Ionic Transport Properties of Protonic Conducting Solid Biopolymer Electrolytes Based on Carboxymethyl Cellulose Doped with Ammonium Fluoride. J. Phys. Chem. B. 2016, 120, 11567–11573. DOI: 10.1021/acs.jpcb.6b06068.
  • Hafiza, M.; Isa, M. I. N. Correlation between Structural, Ion Transport and Ionic Conductivity of Plasticized 2-Hydroxyethyl Cellulose Based Solid Biopolymer Electrolyte. J. Membr. Sci. 2020, 597, 117176. DOI: 10.1016/j.memsci.2019.117176.
  • Zainuddin, N.; Samsudin, A. S. Investigation on the Effect of NH4Br at Transport Properties in k–Carrageenan Based Biopolymer Electrolytes via Structural and Electrical Analysis. Mater. Today Commun. 2018, 14, 199–209. DOI: 10.1016/j.mtcomm.2018.01.004.
  • Arof, A.; Amirudin, S.; Yusof, S.; Noor, I. M. A Method Based on Impedance Spectroscopy to Determine Transport Properties of Polymer Electrolytes. Phys. Chem. Chem. Phys. 2014, 16, 1856–1867. DOI: 10.1039/c3cp53830c.
  • Rodi, I.; Saaid, F.; 2017and T. Winie,. PEMA-LiCF3SO3 Polymer Electrolytes: Assessment of Conductivity and Transport Properties. AIP Conf. Proceedings. 1877, p. 060003. DOI: 10.1063/1.4999882.
  • Rajeswari, N.; Selvasekarapandian, S.; Sanjeeviraja, C.; Kawamura, J.; Bahadur, S. A. A Study on Polymer Blend Electrolyte Based on PVA/PVP with Proton Salt. Polym. Bull. 2014, 71, 1061–1080. DOI: 10.1007/s00289-014-1111-8.
  • Selvasekarapandian, S.; Hema, M.; Kawamura, J.; Kamishima, O.; Baskaran, R. Characterization of PVA-NH4NO3 Polymer Electrolyte and Its Application in Rechargeable Proton Battery. J. Phys. Soc. Jpn. 2010, 79, 163–168. DOI: 10.1143/JPSJS.79SA.163.
  • Chai, M. N.; Ramlli, M. A.; Isa, M. I. N. Proton Conductor of Propylene Carbonate-Plasticized Carboxyl Methylcellulose-Based Solid Polymer Electrolyte. Int. J. Polym. Anal. Charact. 2013, 18, 297–302. DOI: 10.1080/1023666X.2013.784934.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.