152
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Nanocomposite Membranes Based on Imidazole-Functionalized Chitin Nanowhiskers for Direct Methanol Fuel Cell Applications

, &
Pages 663-685 | Received 23 Jun 2020, Accepted 16 Feb 2021, Published online: 05 Mar 2021

References

  • Tohidian, M.; Ghaffarian, S. R.; Shakeri, S. E.; Dashtimoghadam, E.; Hasani-Sadrabadi, M. M. Organically Modified Montmorillonite and Chitosan–Phosphotungstic Acid Complex Nanocomposites as High Performance Membranes for Fuel Cell Applications. J. Solid State Electrochem. 2013, 17, 2123–2137. DOI: 10.1007/s10008-013-2074-7.
  • Tenson, T.; Baby, R. Recent Advances in Proton Exchange Membrane Fuel Cells: A Review. Int. Adv Res. J. Sci. 2017, 4, 34–40. DOI: 10.17148/IARJSET.
  • Haghighi, A. H.; Hasani-Sadrabadi, M. M.; Dashtimoghadam, E.; Bahlakeh, G.; Shakeri, S. E.; Majedi, F. S.; Emami, S. H.; Moaddel, H. Direct Methanol Fuel Cell Performance of Sulfonated Poly (2, 6-Dimethyl-1, 4-Phenylene Oxide)-Polybenzimidazole Blend Proton Exchange Membranes. Int. J. Hydrogen Energy 2011, 36, 3688–3696. DOI: 10.1016/j.ijhydene.2010.12.101.
  • Molla, S.; Compan, V. Polymer Blends of SPEEK for DMFC Application at Intermediate Temperatures. Int. J. Hydrogen Energy 2014, 39, 5121–5136. DOI: 10.1016/j.ijhydene.2014.01.085.
  • Woo, Y.; Oh, S. Y.; Kang, Y. S.; Jung, B. Synthesis and Characterization of Sulfonated Polyimide Membranes for Direct Methanol Fuel Cell. J. Memb. Sci. 2003, 220, 31–45. DOI: 10.1016/S0376-7388(03)00185-6.
  • Shin, J.-P.; Chang, B.-J.; Kim, J.-H.; Lee, S.-B.; Suh, D. H. Sulfonated Polystyrene/PTFE Composite Membranes. J. Memb. Sci. 2005, 251, 247–254. DOI: 10.1016/j.memsci.2004.09.050.
  • Xu, W.; Liu, C.; Xue, X.; Su, Y.; Lv, Y.; Xing, W.; Lu, T. New Proton Exchange Membranes Based on Poly (Vinyl Alcohol) for DMFCs. Solid State Ion. 2004, 171, 121–127. DOI: 10.1016/j.ssi.2004.04.009.
  • Osifo, P. O.; Masala, A. The Influence of Chitosan Membrane Properties for Direct Methanol Fuel Cell Applications. J. Fuel Cell Sci. Technol. 2012, 9, 011003. DOI: 10.1115/1.4005382.
  • Shao, Z.-G.; Wang, X.; Hsing, I.-M. Composite Nafion/Polyvinyl Alcohol Membranes for the Direct Methanol Fuel Cell. J. Memb. Sci. 2002, 210, 147–153. DOI: 10.1016/S0376-7388(02)00386-1.
  • Wu, H. L.; Ma, C. C. M.; Kuan, H. C.; Wang, C. H.; Chen, C. Y.; Chiang, C. L. Sulfonated Poly (Ether Ether Ketone)/Poly (Vinylpyrrolidone) Acid–Base Polymer Blends for Direct Methanol Fuel Cell Application. J. Polym. Sci. B Polym. Phys. 2006, 44, 565–572. DOI: 10.1002/polb.20717.
  • Hasani-Sadrabadi, M. M.; Dashtimoghadam, E.; Majedi, F. S.; Wu, S.; Bertsch, A.; Moaddel, H.; Renaud, P. Nafion/Chitosan-Wrapped CNT Nanocomposite Membrane for High-Performance Direct Methanol Fuel Cells. RSC Adv. 2013, 3, 7337–7346. DOI: 10.1039/c3ra40480c.
  • Shahidi, F.; Arachchi, J. K. V.; Jeon, Y.-J. Food Applications of Chitin and Chitosans. Trends Food Sci. Technol. 1999, 10, 37–51. DOI: 10.1016/S0924-2244(99)00017-5.
  • Paillet, M.; Dufresne, A. Chitin Whisker Reinforced Thermoplastic Nanocomposites. Macromolecules 2001, 34, 6527–6530. DOI: 10.1021/ma002049v.
  • Pillai, C.; Paul, W.; Sharma, C. P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Prog. Polym. Sci. 2009, 34, 641–678. DOI: 10.1016/j.progpolymsci.2009.04.001.
  • Rinaudo, M. Chitin and Chitosan: properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. DOI: 10.1016/j.progpolymsci.2006.06.001.
  • Zeng, J.-B.; He, Y.-S.; Li, S.-L.; Wang, Y.-Z. Chitin Whiskers: An Overview. Biomacromolecules 2012, 13, 1–11. DOI: 10.1021/bm201564a.
  • Mohebbi, S.; Nezhad, M. N.; Zarrintaj, P.; Jafari, S. H.; Gholizadeh, S. S.; Saeb, M. R.; Mozafari, M. Chitosan in Biomedical Engineering: A Critical Review. Curr. Stem Cell Res. Ther. 2019, 14, 93–116. DOI: 10.2174/1574888X13666180912142028.
  • Prashanth, K. H.; Tharanathan, R. Chitin/Chitosan: Modifications and their Unlimited Application Potential—An Overview. Trends Food Sci. Technol. 2007, 18, 117–131. DOI: 10.1016/j.tifs.2006.10.022.
  • Jimtaisong, A.; Saewan, N. Utilization of Carboxymethyl Chitosan in Cosmetics. Int. J. Cosmet. Sci. 2014, 36, 12–21. DOI: 10.1111/ics.12102.
  • Dhillon, G. S.; Kaur, S.; Brar, S. K.; Verma, M. Green Synthesis Approach: Extraction of Chitosan from Fungus Mycelia. Crit. Rev. Biotechnol. 2013, 33, 379–403. DOI: 10.3109/07388551.2012.717217.
  • Revol, J.-F.; Marchessault, R. H. In Vitro Chiral Nematic Ordering of Chitin Crystallites. J. Biomacromol. 1993, 15, 329–335. DOI: 10.1016/0141-8130(93)90049-R.
  • Morin, A.; Dufresne, A. Nanocomposites of Chitin Whiskers from Riftia Tubes and Poly (Caprolactone). Macromolecules 2002, 35, 2190–2199. DOI: 10.1021/ma011493a.
  • Gopalan Nair, K.; Dufresne, A. Crab Shell Chitin Whisker Reinforced Natural Rubber Nanocomposites. 2. Mechanical Behavior. Biomacromolecules 2003, 4, 666–674. DOI: 10.1021/bm0201284.
  • Ofem, M. I. Characterisation of Alpha-Chitin/Poly (Acrylic Acid) Blend films. Mater. Discov. 2017, 9, 1–10. DOI: 10.1016/j.md.2018.01.004.
  • Peng, C.; Chen, G. Preparation and Assessment of Heat-Treated α-Chitin Nanowhiskers Reinforced Poly (Viny Alcohol) Film for Packaging Application. Materials 2018, 11, 1883. DOI: 10.3390/ma11101883.
  • Huang, Y.; Yao, M.; Zheng, X.; Liang, X.; Su, X.; Zhang, Y.; Lu, A.; Zhang, L. Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels. Biomacromolecules 2015, 16, 3499–3507. DOI: 10.1021/acs.biomac.5b00928.
  • Meshkat, S. S.; Nezhad, M. N.; Bazmi, M. R. Investigation of Carmine Dye Removal by Green Chitin Nanowhiskers Adsorbent. Emerg. Sci. J. 2019, 3, 187–194. DOI: 10.28991/esj-2019-01181.
  • Sakaguchi, T.; Horikoshi, T.; Nakajima, A. Adsorption of Uranium by Chitin Phosphate and Chitosan Phosphate. Agric. Biol. Chem. 1981, 45, 2191–2195. https://doi.org/10.1271/bbb1961.45.2191. DOI: 10.1080/00021369.1981.10864862.
  • Dotto, G. L.; Cunha, J. M.; Calgaro, C. O.; Tanabe, E. H.; Bertuol, D. A. Surface Modification of Chitin Using Ultrasound-Assisted and Supercritical CO2 Technologies for Cobalt Adsorption. J. Hazard. Mater. 2015, 295, 29–36. DOI: 10.1016/j.jhazmat.2015.04.009.
  • Izumi, S.; Shimizu, Y.; Higashimura, T. Absorption Behavior of Metal Ions on Chitin/Cellulose Composite Fibers with Chemical Modification by EDTA. Tex. Res. J. 2002, 72, 515–519. DOI: 10.1177/004051750207200609.
  • Yang, R.; Su, Y.; Aubrecht, K. B.; Wang, X.; Ma, H.; Grubbs, R. B.; Hsiao, B. S.; Chu, B. Thiol-Functionalized Chitin Nanofibers for as (III) Adsorption. Polymer 2015, 60, 9–17. DOI: 10.1016/j.polymer.2015.01.025.
  • Karthik, R.; Meenakshi, S. Chemical Modification of Chitin with Polypyrrole for the Uptake of Pb(II) and Cd(II) ions. Int. J. Biol. Macromol. 2015, 78, 157–164. DOI: 10.1016/j.ijbiomac.2015.03.041.
  • Nishimura, S.-I.; Kai, H.; Shinada, K.; Yoshida, T.; Tokura, S.; Kurita, K.; Nakashima, H.; Yamamoto, N.; Uryu, T. Regioselective Syntheses of Sulfated Polysaccharides: Specific anti-HIV-1 Activity of Novel Chitin Sulfates. Carbohydr. Res. 1998, 306, 427–433. https://doi.org/10.1016/S0008-6215. (97)10081-7. DOI: 10.1016/S0008-6215(97)10081-7.
  • Jayakumar, R.; Nwe, N.; Tokura, S.; Tamura, H. Sulfated Chitin and Chitosan as Novel Biomaterials. Int. J. Biol. Macromol. 2007, 40, 175–181. DOI: 10.1016/j.ijbiomac.2006.06.021.
  • Jayakumar, R.; Selvamurugan, N.; Nair, S.; Tokura, S.; Tamura, H. Preparative Methods of Phosphorylated Chitin and Chitosan-An Overview. Int. J. Biol. Macromol. 2008, 43, 221–225. DOI: 10.1016/j.ijbiomac.2008.07.004.
  • Nishi, N.; Noguchi, J.; Tokura, S.; Shiota, H. Studies on Chitin. I. Acetylation of Chitin. Polym. J. 1979, 11, 27–32. DOI: 10.1295/polymj.11.27.
  • Kurita, K.; Yoshino, H.; Yokota, K.; Ando, M.; Inoue, S.; Ishii, S.; Nishimura, S. Preparation of Tosylchitins as Precursors for Facile Chemical Modifications of Chitin. Macromolecules 1992, 25, 3786–3790. DOI: 10.1021/ma00040a026.
  • Maresch, G.; Clausen, G.; Lang, G. In Chitin and Chitosan; Skjak-Braek, G., Anthonsen, T., Sandford. P., eds.; London, Elsevier, 1989.
  • Harmon, R. E.; De, K. K.; Gupta, S. K. New Procedure for Preparing Trimethylsilyl Derivatives of Polysaccharides. Carbohydr. Res. 1973, 31, 407–409. DOI: 10.1016/S0008-6215(00)86207-2.
  • Hasani-Sadrabadi, M. M.; Dashtimoghadam, E.; Nasseri, R.; Karkhaneh, A.; Majedi, F. S.; Mokarram, N.; Renaud, P.; Jacob, K. I. Cellulose Nanowhiskers to Regulate the Microstructure of Perfluorosulfonate Ionomers for High-Performance Fuel Cells. J. Mater. Chem. A. 2014, 2, 11334–11340. DOI: 10.1039/c4ta00635f.
  • Zhang, C.; Zhuang, X.; Li, X.; Wang, W.; Cheng, B.; Kang, W.; Cai, Z.; Li, M. Chitin Nanowhisker-Supported Sulfonated Poly(Ether Sulfone) Proton Exchange for Fuel Cell Applications. Carbohydr. Polym. 2016, 140, 195–201. DOI: 10.1016/j.carbpol.2015.12.029.
  • Gahlot, S.; Kulshrestha, V. Dramatic Improvement in Water Retention and Proton Conductivity in Electrically Aligned Functionalized CNT/SPEEK Nanohybrid PEM. ACS Appl. Mater. Interf. 2015, 7, 264–272. DOI: 10.1021/am506033c.
  • Hasanabadi, N.; Ghaffarian, S. R.; Hasani-Sadrabadi, M. M. Magnetic Field Aligned Nanocomposite Proton Exchange Membranes Based on Sulfonated Poly (Ether Sulfone) and Fe2O3 Nanoparticles for Direct Methanol Fuel Cell Application. Int. J. Hydrogen Energy 2011, 36, 15323–15332. DOI: 10.1016/j.ijhydene.2011.08.068.
  • Haghighi, A. H.; Tohidian, M.; Ghaderian, A.; Shakeri, S. E. Polyelectrolyte Nanocomposite Membranes Using Surface Modified Nanosilica for Fuel Cell Applications. J. Macromol. Sci. Part B Phys. 2017, 56, 383–394. DOI: 10.1080/00222348.2017.1316652.
  • Lee, J.-Y.; Lee, J.-H.; Ryu, S.; Yun, S.-H.; Moon, S.-H. Electrically Aligned Ion Channels in Cation Exchange Membranes and Their Polarized Conductivity. J. Memb. Sci. 2015, 478, 19–24. DOI: 10.1016/j.memsci.2014.12.049.
  • Shirdast, A.; Sharif, A.; Abdollahi, M. Effect of the Incorporation of Sulfonated Chitosan/Sulfonated Graphene Oxide on the Proton Conductivity of Chitosan Membranes. J. Power Sources 2016, 306, 541–551. DOI: 10.1016/j.jpowsour.2015.12.076.
  • Tohidian, M.; Ghaffarian, S. R.; Nouri, M.; Jaafarnia, E.; Haghighi, A. H. Polyelectrolyte Nanocomposite Membranes Using Imidazole-Functionalized Nanosilica for Fuel Cell Applications. J. Macromol. Sci. Part B Phys. 2015, 54, 17–31. DOI: 10.1080/00222348.2014.982485.
  • Tohidian, M.; Ghaffarian, S. R. Surface Modified Multi‐Walled Carbon Nanotubes and Nafion Nanocomposite Membranes for Use in Fuel Cell Applications. Polym. Adv. Technol. 2018, 29, 1219–1226. DOI: 10.1002/pat.4232.
  • Yamada, M.; Honma, I. A Biopolymer Composite Material as an Anhydrous Proton-Conducting Membrane. Angew. Chem. Int. Ed. Engl. 2004, 43, 3688–3691. DOI: 10.1002/anie.200353176.
  • Quartarone, E.; Mustarelli, P.; Carollo, A.; Grandi, S.; Magistris, A.; Gerbaldi, a. C. PBI Composite and Nanocomposite Membranes for PEMFCs: The Role of the Filler. Fuel Cells 2009, 9, 231–236. DOI: 10.1002/fuce.200800145.
  • Salaberria, A. M.; Labidi, J.; Fernandes, S. C. Different Routes to Turn Chitin into Stunning Nano-Objects. Eur. Polym. J. 2015, 68, 503–515. DOI: 10.1016/j.eurpolymj.2015.03.005.
  • Villanueva, M. E.; Salinas, A.; Díaz, L. E.; Copello, G. J. Chitin Nanowhiskers as Alternative Antimicrobial Controlled Release Carriers. New J. Chem. 2015, 39, 614–620. DOI: 10.1039/C4NJ01522C.
  • Tsuchida, K.; Kumagai, M.; Ogino, Y. Imidazole-Silane Compounds and Metal Surface Finishing Agent Containing the Same. Google Patents, 1993.
  • Zhang, Y.; Xue, C.; Xue, Y.; Gao, R.; Zhang, X. Determination of the Degree of Deacetylation of Chitin and Chitosan by X-Ray Powder Diffraction. Carbohydr. Res. 2005, 340, 1914–1917. DOI: 10.1016/j.carres.2005.05.005.
  • Bragg, W. H.; Bragg, W. L. The Reflection of X-Rays by Crystals. Proc. R. Soc. Lond., A, Math. Phys. Sci. 1913, 88, 428–438. DOI: 10.1098/rspa.1913.0040.
  • Cárdenas, G.; Cabrera, G.; Taboada, E.; Miranda, S. P. Chitin Characterization by SEM, FTIR, XRD, and 13C Cross Polarization/Mass Angle Spinning NMR. J. Appl. Polym. Sci. 2004, 93, 1876–1885. DOI: 10.1002/app.20647.
  • Gbenebor, O.; Adeosun, S.; Lawal, G.; Jun, S.; Olaleye, S. Acetylation, Crystalline and Morphological Properties of Structural Polysaccharide from Shrimp Exoskeleton. Int. J. Eng. Sci. Technol. 2017, 20, 1155–1165. DOI: 10.1016/j.jestch.2017.05.002.
  • Larbi, F.; García, A.; del Valle, L. J.; Hamou, A.; Puiggalí, J.; Belgacem, N.; Bras, J. Comparison of Nanocrystals and Nanofibers Produced from Shrimp Shell α-Chitin: From Energy Production to Material Cytotoxicity and Pickering Emulsion Properties. Carbohydr. Polym. 2018, 196, 385–397. DOI: 10.1016/j.carbpol.2018.04.094.
  • Liu, S.; Sun, J.; Yu, L.; Zhang, C.; Bi, J.; Zhu, F.; Qu, M.; Jiang, C.; Yang, Q. Extraction and Characterization of Chitin from the Beetle Holotrichia Parallela Motschulsky. Molecules 2012, 17, 4604–4611. DOI: 10.3390/molecules17044604.
  • Kaya, M.; Baublys, V.; Can, E.; Šatkauskienė, I.; Bitim, B.; Tubelytė, V.; Baran, T. Comparison of Physicochemical Properties of Chitins Isolated from an Insect (Melolontha melolontha) and a Crustacean Species (Oniscus asellus). Zoomorphology 2014, 133, 285–293. DOI: 10.1007/s00435-014-0227-6.
  • Dai, Y.; Ruan, X.; Yan, Z.; Yang, K.; Yu, M.; Li, H.; Zhao, W.; He, G. Imidazole Functionalized Graphene Oxide/PEBAX Mixed Matrix Membranes for Efficient CO2 Capture. Sep. Purif. Technol. 2016, 166, 171–180. DOI: 10.1016/j.seppur.2016.04.038.
  • Visakh, P.; Monti, M.; Puglia, D.; Rallini, M.; Santulli, C.; Sarasini, F.; Thomas, J.; Kenny, S. Mechanical and Thermal Properties of Crab Chitin Reinforced Carboxylated SBR Composites. Express Polym. Lett. 2012, 6, 396–409. DOI: doi:.10.3144/expresspolymlett.2012.42.
  • Zhao, S.; Wang, Z.; Pang, H.; Zhang, W.; Zhang, S.; Li, J.; Li, L. Organic-Inorganic Nanohybrid Polyurethane Elastomer Based on Dopamine-Mediated Biomimetic co-Deposition Thought toward Multiple Improved Properties. Appl. Surf. Sci. 2019, 493, 1340–1349. DOI: 10.1016/j.apsusc.2019.07.139.
  • Ahmed, S.; Ali, M.; Cai, Y.; Lu, Y.; Ahmad, Z.; Khannal, S.; Xu, S. Novel Sulfonated Multi‐Walled Carbon Nanotubes Filled Chitosan Composite Membrane for Fuel‐Cell Applications. J. Appl. Polym. Sci. 2019, 136, 47603. DOI: 10.1002/app.47603.
  • Li, Q.; Zhou, J.; Zhang, L. Structure and Properties of the Nanocomposite Films of Chitosan Reinforced with Cellulose Whiskers. J. Polym. Sci. B Polym. Phys. 2009, 47, 1069–1077. DOI: 10.1002/polb.21711.
  • Zhao, Q.; Wei, Y.; Ni, C.; Wang, L.; Liu, B.; Liu, J.; Zhang, M.; Men, Y.; Sun, Z.; Xie, H.; et al. Effect of Aminated Nanocrystal Cellulose on Proton Conductivity and Dimensional Stability of Proton Exchange Membranes. Appl. Surf. Sci. 2019, 466, 691–702. DOI: 10.1016/j.apsusc.2018.10.063.
  • Xu, X.; Zhao, G.; Wang, H.; Li, X.; Feng, X.; Cheng, B.; Shi, L.; Kang, W.; Zhuang, X.; Yin, Y. Bio-Inspired Amino-Acid-Functionalized Cellulose Whiskers Incorporated into Sulfonated Polysulfone for Proton Exchange Membrane. J. Power Sources 2019, 409, 123–131. DOI: 10.1016/j.jpowsour.2018.11.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.