200
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous Improvement of the Mechanical and Flame-Retardant Properties of a Composite Elastomer by a Biomimetic Modified Multilayer Graphene

, , , &
Pages 708-726 | Received 17 Jan 2021, Accepted 13 Mar 2021, Published online: 30 Mar 2021

References

  • Liu, Y.; He, J.; Yang, R. The Synthesis of Melamine-Based Polyether Polyol and Its Effects on the Flame Retardancy and Physical-Mechanical Property of Rigid Polyurethane Foam. J. Mater. Sci 2016, 52, 1–13. DOI: 10.1007/s10853-016-0713-y.
  • Kim, S. Flame Retardancy and Smoke Suppression of Magnesium Hydroxide Filled Polyethylene. J. Polym. Sci. B Polym. Phys. 2003, 41, 936–944. DOI: 10.1002/polb.10453.
  • Alaee, M.; Arias, P.; Sjodin, A.; Bergman, A. An Overview of Commercially Used Brominated Flame Retardants, Their Applications, Their Use Patterns in Different Countries/Regions and Possible Modes of Release. Environ. Int. 2003, 29, 683–689. DOI: 10.1016/S0160-4120(03)00121-1.
  • Lu, Z.; Feng, W.; Kang, X.; Wang, J.; Xu, H.; Li, J.; Wang, Y.; Liu, B.; Fang, X. Flame Retardant Effect and Mechanism of Benzoxazine as Synergist in Intumescent Flame-Retardant Polyoxymethylene. Polym. Adv. Technol. 2020, 31, 2512–2525. DOI: 10.1002/pat.4978.
  • He, W.; Song, P.; Yu, B.; Fang, Z.; Wang, H. Flame Retardant Polymeric Nanocomposites through the Combination of Nanomaterials and Conventional Flame Retardants. Prog. Mater. Sci 2020, 114, 100687. DOI: 10.1016/j.pmatsci.2020.100687.
  • de Boer, J.; Ballesteros-Gomez, A.; Leslie, H. A.; Brandsma, S. H.; Leonards, P. E. G. Flame Retardants: Dust - And not food - Might be the risk. Chemosphere 2016, 150, 461–464. DOI: 10.1016/j.chemosphere.2015.12.124.
  • Chang, M. K.; Hwang, S. S.; Liu, S. P. Flame Retardancy and Thermal Stability of Ethylene-Vinyl Acetate Copolymer Nanocomposites with Alumina Trihydrate and Montmorillonite. J. Ind. Eng. Chem 2014, 20, 1596–1601. DOI: 10.1016/j.jiec.2013.08.004.
  • Salaün, F.; Vroman, I.; Bedek, G.; Lewandowski, M. Effects of Microparticles on Isotactic Polypropylene: Thermomechanical and Thermal Properties. J. Polym. Sci. B Polym. Phys. 2008, 46, 2566–2576. DOI: 10.1002/polb.21582.
  • Pei, J.; Wen, Y.; Li, Y.; Shi, X.; Zhang, J.; Li, R.; Du, Q. Flame-Retarding Effects and Combustion Properties of Asphalt Binder Blended with Organo Montmorillonite and Alumina Trihydrate. Constr. Build. Mater 2014, 72, 41–47. DOI: 10.1016/j.conbuildmat.2014.09.013.
  • Wu, B.; Kong, W.; Hu, K.; Fu, X.; Lei, J.; Zhou, C. Synergistic Effect of Phosphorus-Containing Silane Coupling Agent with Alumina Trihydrate in Ethylene-Vinyl Acetate Composites. Adv. Polym. Technol. 2018, 37, 1456–1468. DOI: 10.1002/adv.21804.
  • Mo, H.; Xu, L.; Zhou, T. Novel Synergistic Flame-Retardant System of Mg-Al-Co-LDHs/DPCPB for ABS Resins. J. Appl. Polym. Sci. 2018, 135, 46319. DOI: 10.1002/app.46319.
  • Wang, Z.; Shen, X.; Qian, T.; Xu, K.; Sun, Q.; Jin, C. Fabrication of Superhydrophobic Mg/Al Layered Double Hydroxide (LDH) Coatings on Medium Density Fiberboards (MDFs) with Flame Retardancy. Materials 2018, 11, 1113. DOI: 10.3390/ma11071113.
  • Wang, L.; Zhang, M.; Zhou, B. Thermal Stability, Combustion Behavior, and Mechanical Property in a Flame-Retardant Polypropylene System. Appl. Sci 2017, 7, 55. DOI: 10.3390/app7010055.
  • Wang, P.; Xia, L.; Jian, R.; Ai, Y.; Zheng, X.; Chen, G.; Wang, J. Flame-Retarding Epoxy Resin with an Efficient P/N/S-Containing Flame Retardant: Preparation, Thermal Stability, and Flame Retardance. Polym. Degrad. Stabil 2018, 149, 69–77. DOI: 10.1016/j.polymdegradstab.2018.01.026.
  • Wang, X.; Hu, Y.; Song, L.; Xing, W.; Lu, H. Thermal Degradation Behaviors of Epoxy Resin/POSS Hybrids and Phosphorus–Silicon Synergism of Flame Retardancy. J. Polym. Sci. B Polym. Phys. 2010, 48, 693–705. DOI: 10.1002/polb.21939.
  • Zhou, X.; Qiu, S.; Mu, X.; Zhou, M.; Cai, W.; Song, L.; Xing, W.; Hu, Y. Polyphosphazenes-Based Flame Retardants: A Review. Compos. B. Eng 2020, 202, 108397. 10.1016/j.compositesb.2020.108397. DOI: doi:.
  • Zhong, Y.; Wu, W.; Wu, R.; Luo, Q.; Wang, Z. The Flame Retarding Mechanism of the Novolac as Char Agent with the Fire Retardant Containing Phosphorous-Nitrogen in Thermoplastic Poly(Ether Ester) Elastomer System. Polym. Degrad. Stabil 2014, 105, 166–177. DOI: 10.1016/j.polymdegradstab.2014.04.013.
  • Kappes, R. S.; Urbainczyk, T.; Artz, U.; Textor, T.; Gutmann, J. S. Flame Retardants Based on Amino Silanes and Phenylphosphonic Acid. Polym. Degrad. Stabil 2016, 129, 168–179. DOI: 10.1016/j.polymdegradstab.2016.04.012.
  • Li, Q. L.; Wang, X. L.; Wang, D. Y.; Wang, Y. Z.; Feng, X. N.; Zheng, G. H. Durable Flame Retardant Finishing of PET/Cotton Blends Using a Novel PVA-Based Phosphorus-Nitrogen Polymer. J. Appl. Polym. Sci. 2011, 122, 342–353. DOI: 10.1002/app.34182.
  • Qi, H.; Liu, S.; Chen, X.; Wang, Y.; Feng, X.; Zheng, G.-H. The Flame Retardant and Thermal Performances of Polypropylene with a Novel Intumescent Flame Retardant. J. Appl. Polym. Sci. 2020, 137, 49047. DOI: 10.1002/app.34182.
  • Wu, H.; Li, Y.; Zeng, B.; Chen, G.; Wu, Y.; Chen, T.; Dai, L. A High Synergistic P/N/Si-Containing Additive with Dandelion-Shaped Structure Deriving from Self-Assembly for Enhancing Thermal and Flame Retardant Property of Epoxy Resins. React. Funct. Polym 2018, 131, 89–99. DOI: 10.1016/j.reactfunctpolym.2018.07.009.
  • Feng, Y.; He, C.; Wen, Y.; Ye, Y.; Zhou, X.; Xie, X.; Mai, Y. Superior Flame Retardancy and Smoke Suppression of Epoxy-Based Composites with Phosphorus/Nitrogen co-Doped Graphene. J. Hazard. Mater. 2018, 346, 140–151. DOI: 10.1016/j.jhazmat.2017.12.019.
  • Xu, D.; Lu, H.; Huang, Q.; Deng, B.; Li, L. Flame-Retardant Effect and Mechanism of Melamine Phosphate on Silicone Thermoplastic Elastomer. RSC Adv. 2018, 8, 5034–5041. DOI: 10.1039/C7RA12865G.
  • Chen, H.; Wang, J.; Ni, A.; Ding, A.; Sun, Z.; Han, X. Effect of Novel Intumescent Flame Retardant on Mechanical and Flame Retardant Properties of Continuous Glass Fibre Reinforced Polypropylene Composites. Compos. Struct 2018, 203, 894–902. DOI: 10.1016/j.compstruct.2018.07.071.
  • Lu, C.; Gao, X.; Yao, D.; Cao, C.; Luo, Y. Improving Flame Retardancy of Linear Low-Density Polyethylene/Nylon 6 Blends via Controlling Localization of Clay and Intumescent Flame-Retardant. Polym. Degrad. Stabil 2018, 153, 75–87. DOI: 10.1016/j.polymdegradstab.2018.04.022.
  • Lu, L.; Guo, N.; Qian, X.; Yang, S.; Wang, X.; Jin, J.; Shao, G. Thermal Degradation and Combustion Behavior of Intumescent Flame-Retardant Polypropylene with Novel Phosphorus-Based Flame Retardants. J. Appl. Polym. Sci. 2018, 135, 45962. DOI: 10.1016/j.polymdegradstab.2018.04.022.
  • Nie, S.; Wu, W.; Pan, Y.; Dong, X.; Li, B.; Wang, D. Studies on Intumescent Flame Retardant Polypropylene Composites Based on Biodegradable Wheat Straw. Fire Mater 2018, 42, 703–709. DOI: 10.1002/fam.2523.
  • Xia, S.; Zhang, Z.; Leng, Y.; Li, B.; Xu, M. Synthesis of a Novel Mono-Component Intumescent Flame Retardant and Its High Efficiency for Flame Retardant Polyethylene. J. Anal Appl. Pyrolysis 2018, 134, 632–640. DOI: 10.1016/j.jaap.2018.08.017.
  • Zhu, C.; He, M.; Liu, Y.; Cui, J.; Tai, Q.; Song, L.; Hu, Y. Synthesis and Application of a Mono-Component Intumescent Flame Retardant for Polypropylene. Polym. Degrad. Stabil 2018, 151, 144–151. DOI: 10.1016/j.polymdegradstab.2018.03.007.
  • Zhou, P.; Huang, L.; Ma, D.; Zhang, Z.; Huo, S.; Wang, L.; Lei, Z. Effects of Organopalygorskite on Intumescent Flame-Retarded Polypropylene. J. Vinyl Addit. Technol. 2018, 24, 281–287. DOI: 10.1002/vnl.21586.
  • Li, L.; Mao, X.; Ju, R.; Chen, Y.; Qian, L. Synergistic Effect of Organo-Montmorillonite on Intumescent Flame-Retardant PLA. Ferroelectrics 2018, 527, 25–36. DOI: 10.1080/00150193.2018.1450045.
  • Wang, X.; Sun, C.; Rong-Liang, W.; Wang, X. Study on the Mixture of an Intumescent Flame Retardant Containing Various Caged Phosphates Melamine Salt and PP. J. Funct. Polym 2005, 18, 474–478. DOI: 10.1038/sj.cr.7290370.
  • Wu, D.; Zhao, P.; Liu, Y.; Liu, X.; Wang, X. Halogen Free Flame Retardant Rigid Polyurethane Foam with a Novel Phosphorus-Nitrogen Intumescent Flame Retardant. J. Appl. Polym. Sci 2014, 131, 39581. DOI: 10.1002/app.39581.
  • Chen, M.; Wang, X.; Li, X.; Liu, X.; Zhong, L.; Wang, H.; Liu, Z. The Synergistic Effect of Cuprous Oxide on an Intumescent Flame-Retardant Epoxy Resin System. RSC Adv. 2017, 7, 35619–35628. DOI: 10.1039/C7RA05482C.
  • Han, L.; Wu, W.; Qi, Y.; Qu, H.; Xu, J. Synergistic Flame Retardant Effect of BiFeO3 in Intumescent Flame-Retardant Polypropylene Composites. Polym. Compos. 2017, 38, 2771–2778. DOI: 10.1002/pc.23876.
  • Hong, H.; Liu, H.; Zhang, H.; He, H.; Liu, T.; Jia, D. Flame Retarded Polyethylene/Wood Flour Composites with High Performances: Satisfying Both Sides with Intumescent Flame Retardants and Synergistic Compatibilizers, Respectively. Polym. Compos. 2018, 39, 569–579. DOI: 10.1002/pc.23970.
  • Alongi, J.; Han, Z.; Bourbigot, S. Intumescence: Tradition versus Novelty. A Comprehensive Review. Prog. Polym. Sci 2015, 51, 28–73. DOI: 10.1016/j.progpolymsci.2015.04.010.
  • Anees, S. M.; Dasari, A. A Review on the Environmental Durability of Intumescent Coatings for Steels. J. Mater. Sci. 2018, 53, 124–145. DOI: 10.1007/s10853-017-1500-0.
  • Puri, R. G.; Khanna, A. S. Intumescent Coatings: A Review on Recent Progress. J. Coat. Technol. Res. 2017, 14, 1–20. DOI: 10.1007/s11998-016-9815-3.
  • Dabrowsk, F.; Bras, M. L.; Delobel, R.; Gilman, J.; Kashiwagi, T. Using Clay in PA-Based Intumescent Formulations. Fire Performance and Kinetic Parameters. Macromol. Symp. 2003, 194, 201–206. DOI: 10.1002/masy.200390083.
  • Yuan, B.; Sun, Y.; Chen, X.; Shi, Y.; Dai, H.; He, S. Poorly-/Well-Dispersed Graphene: Abnormal Influence on Flammability and Fire Behavior of Intumescent Flame Retardant. Compos. Part A-Appl. S 2018, 109, 345–354. DOI: 10.1016/j.compositesa.2018.03.022.
  • Hu, C.; Xue, J.; Dong, L.; Jiang, Y.; Wang, X.; Qu, L.; Dai, L. Scalable Preparation of Multifunctional Fire-Retardant Ultralight Graphene Foams. ACS Nano. 2016, 10, 1325–1325. DOI: 10.1021/acsnano.5b06710.
  • Liu, J. J.; Yuen, R. K. K.; Hong, N. N.; Hu, Y. The Influence of Mesoporous SiO2-Graphene Hybrid Improved the Flame Retardancy of Epoxy Resins. Polym. Adv. Technol. 2018, 29, 1478–1486. DOI: 10.1002/pat.4259.
  • Zhou, K.; Liu, C.; Gao, R. Polyaniline: A Novel Bridge to Reduce the Fire Hazards of Epoxy Composites. Compos. Part A-Appl. S 2018, 112, 432–433. DOI: 10.1016/j.compositesa.2018.06.031.
  • Nine, M. J.; Tran, D. N. H.; Tung, T. T.; Kabiri, S.; Losic, D. Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action. ACS Appl Mater Interfaces 2017, 9, 10160–10168. DOI: 10.1021/acsami.7b00572.
  • Dittrich, B.; Wartig, K.-A.; Hofmann, D.; Mülhaupt, R.; Schartel, B. Flame Retardancy through Carbon Nanomaterials: Carbon Black, Multiwall Nanotubes, Expanded Graphite, Multi-Layer Graphene and Graphene in Polypropylene. Polym. Degrad. Stabil 2013, 98, 1495–1505. DOI: 10.1016/j.polymdegradstab.2013.04.009.
  • Dong, L. P.; Deng, C.; Wang, Y. Z. Influence of Small Difference in Structure of Polyamide Charring Agents on Their Flame-Retardant Efficiency in EVA. Polym. Degrad. Stabil 2017, 135, 130–139. DOI: 10.1016/j.polymdegradstab.2016.12.002.
  • Wang, X.; Li, N.; Wang, J.; Li, G.; Zong, L.; Liu, C.; Jian, X. Hyperbranched Polyether Epoxy Grafted Graphene Oxide for Benzoxazine Composites: Enhancement of Mechanical and Thermal Properties. Compos. Sci. Technol 2018, 155, 11–21. DOI: 10.1016/j.compscitech.2017.11.013.
  • Yuan, H. C.; Lee, C. Y.; Tai, N. H. Extremely High Thermal Conductivity of Nanodiamond-Polydopamine/Thin-Layer Graphene Composite Films. Compos. Sci. Technol 2018, 167, 313–322. DOI: 10.1016/j.compscitech.2018.08.010.
  • Wang, R.; Zhuo, D.; Weng, Z.; Wu, L.; Cheng, X.; Zhou, Y.; Wang, J.; Xuan, B. A Novel Nanosilica/Graphene Oxide Hybrid and Its Flame Retarding Epoxy Resin with Simultaneously Improved Mechanical, Thermal Conductivity, and Dielectric Properties. J. Mater. Chem. A. 2015, 3, 9826–9836. DOI: 10.1039/C5TA00722D.
  • Wang, X.; Liu, X.; Yuan, H.; Liu, H.; Liu, C.; Li, T.; Yan, C.; Yan, X.; Shen, C.; Guo, Z. Non-Covalently Functionalized Graphene Strengthened Poly(Vinyl Alcohol). Mater. Des 2018, 139, 372–379. DOI: 10.1016/j.matdes.2017.11.023.
  • Cho, J. H.; Vasagar, V.; Shanmuganathan, K.; Jones, A.; Nazarenko, S.; Ellison, C. Bioinspired Catecholic Flame Retardant Nanocoating for Flexible Polyurethane Foams. Chem. Mater. 2015, 27, 6784–6790. DOI: 10.1021/acs.chemmater.5b03013.
  • Cai, W.; Wang, J.; Pan, Y.; Guo, W.; Mu, X.; Feng, X.; Yuan, B.; Wang, X.; Hu, Y. Mussel-Inspired Functionalization of Electrochemically Exfoliated Graphene: based on Self-Polymerization of Dopamine and Its Suppression Effect on the Fire Hazards and Smoke Toxicity of Thermoplastic Polyurethane. J. Hazard. Mater. 2018, 352, 57–69. DOI: 10.1016/j.jhazmat.2018.03.021.
  • Fernández, A. C. R.; Castellani, N. J. Noncovalent Interactions between Dopamine and Regular and Defective Graphene. Chemphyschem 2017, 18, 2065–2080. DOI: 10.1002/cphc.201700252.
  • Ning, N.; Ma, Q.; Liu, S.; Tian, M.; Zhang, L.; Nishi, T. Tailoring Dielectric and Actuated Properties of Elastomer Composites by Bioinspired Poly(Dopamine) Encapsulated Graphene Oxide. ACS Appl Mater Interfaces 2015, 7, 10755–10762. DOI: 10.1021/acsami.5b00808.
  • Kang, X.; Cai, W.; Zhang, S.; Cui, S. Revealing the Formation Mechanism of Insoluble Polydopamine by Using a Simplified Model System. Polym. Chem. 2017, 8, 860–864. DOI: 10.1039/C6PY02005D.
  • Hwang, S. H.; Kang, D.; Ruoff, R. S.; Shin, H.; Park, Y. Poly(Vinyl Alcohol) Reinforced and Toughened with Poly(Dopamine)-Treated Graphene Oxide, and Its Use for Humidity Sensing. ACS Nano. 2014, 8, 6739–6747. DOI: 10.1021/nn500504s.
  • Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D.; Bielawski, C. Elucidating the Structure of Poly(Dopamine). Langmuir 2012, 28, 6428–6435. DOI: 10.1021/la204831b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.