185
Views
3
CrossRef citations to date
0
Altmetric
Articles

Improvement in Thermal Conductivity of Through-Plane Aligned Graphite Flake/Silicone Modified Epoxy Resin Composites

, , , &
Pages 379-392 | Received 26 May 2021, Accepted 23 Feb 2021, Published online: 05 Jan 2022

References

  • Fan, R.; Huang, Y.; Han, X.; Peng, X. High Thermal Conductivity and Mechanical Properties of Si@Graphite/Aluminum Nitride/Aluminum Compo-Sites for High Efficiency Thermal Management. J. Alloys Compd. 2021, 858, 157630. DOI: 10.1016/j.jallcom.2020.157630.
  • Wang, C.; Su, Y.; Ouyang, Q.; Zhang, D. Enhanced Through-Plane Thermal Conductivity and Mechanical Properties of Vertically Aligned Graphene Nanoplatelet@Graphite Flakes Reinforced Aluminum Composites. Diam. Relat. Mater. 2020, 108, 107929. DOI: 10.1016/j.diamond.2020.107929.
  • Sun, H.; Deng, N.; Li, J.; He, G.; Li, J. Highly Thermal-Conductive Graphite Flake/Cu Composites Prepared by Sintering Intermittently Electroplated Core-Shell Powders. J. Mater. Sci. Technol. 2021, 61, 93–99. DOI: 10.1016/j.jmst.2020.05.044.
  • Xu, X.; Niu, Y.; Yao, B.; Dong, J.; Hu, R.; Wang, H. Double Core Shell Structured Al@Al2O3@SiO2 Filled Epoxy Composites for Thermal Management Application. Appl. Phys. Lett. 2020, 117, 142906. DOI: 10.1063/5.0020409.
  • Tanaka, S.; Takezawa, Y.; Kanie, K.; Muramatsu, A. Homeotropically Aligned Monodomain-like Smectic-A Structure in Liquid Crystalline Epoxy Films: Analysis of the Local Ordering Structure by Microbeam Small-Angle X-Ray Scattering. ACS Omega. 2020, 5, 20792–20799. DOI: 10.1021/acsomega.0c01603.
  • Yu, C.; Zhang, J.; Li, Z.; Tian, W.; Wang, L.; Luo, J.; Li, Q.; Fan, X.; Yao, Y. Enhanced Through-Plane Thermal Conductivity of Boron Nitride/Epoxy Composites. Compos. Part A Appl. Sci. Manuf. 2017, 98, 25–31. DOI: 10.1016/j.compositesa.2017.03.012.
  • Gantayat, S.; Sarkar, N.; Prusty, G.; Rout, D.; Swain, S. K. Designing of Epoxy Matrix by Chemically Modified Multiwalled Carbon Nanotubes. Adv. Polym. Technol. 2018, 37, 176–184. DOI: 10.1002/adv.21654.
  • Qin, T. F.; Wang, H.; He, J.; Qu, Q. Q.; Da, Y. S.; Tian, X. Y. Amino Multi-Walled Carbon Nanotubes Further Improve the Thermal Conductivity of Boron Nitride/Liquid Crystal Epoxy Resin Composites. Express Polym. Lett. 2020, 14, 1169–1179. DOI: 10.3144/expresspolymlett.2020.95.
  • Aussawasathien, D.; Hrimchum, K. Carboxylic-Plasma-Treated Nanofiller Hybrids in Carbon Fiber Reinforced Epoxy Composites: Dispersion and sy-Nergetic Effects. Express Polym. Lett. 2021, 15, 262–273. DOI: 10.3144/expresspolymlett.2021.23.
  • Yeo, H.; Islam, A. M.; You, N.; Ahn, S.; Goh, M.; Hahn, J. R.; Jang, S. G. Characteristic Correlation between Liquid Crystalline Epoxy and Alumina Filler on Thermal Conducting Properties. Compos. Sci. Technol. 2017, 141, 99–105. DOI: 10.1016/j.compscitech.2017.01.016.
  • Sui, X.; Zhou, W.; Dong, L.; Wang, Z.; Wu, P.; Zuo, J.; Cai, H.; Liu, X. Epoxy Composites with Added Aluminum with Binary Particle Size Distribution for Enhanced Dielectric Properties and Thermal Conductivity. J. Electron. Mater. 2016, 45, 5974–5984. DOI: 10.1007/s11664-016-4834-5.
  • Isarn, I.; Ramis, X.; Ferrando, F.; Serra, A. Ther-Moconductive Thermosetting Composites Based on Boron Nitride Fillers and Thiol-Epoxy Matrices. Polymers 2018, 10, 277. DOI: 10.3390/polym10030277.
  • Pan, D.; Zhang, X.; Yang, G.; Shang, Y.; Su, F.; Hu, Q.; Patil, R. R.; Liu, H.; Liu, C.; Guo, Z. Thermally Conductive Anticorrosive Epoxy Nanocomposites with Tannic Acid-Modified Boron Nitride Nanosheets. Ind. Eng. Chem. Res. 2020, 59, 20371–20381. DOI: 10.1021/acs.iecr.0c04510.
  • Li, B.; Yang, Z.; Wang, Z.; Huang, Q.; Liu, X.; Yan, B.; Cheng, L.; Shi, T.; Zhang, D.; Wu, M.; et al. Graphite Flakes/UO2 Fuel Pellets with Excellent Thermal Conductivity in Radial Direction. J. Nucl. Mater. 2021, 545, 152639. DOI: 10.1016/j.jnucmat.2020.152639.
  • Kumaresan, V.; Raghavan, K. S.; Vikram, M. P.; Iyyappan, J. Expedited Energy Charging of Water Using Natural Graphite Flake for Cool Thermal Storage. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 670–677. DOI: 10.1080/1536383X.2021.1879056.
  • Liu, S.; Zhao, B.; Jiang, L.; Zhu, Y.-W.; Fu, X.-Z.; Sun, R.; Xu, J.-B.; Wong, C.-P. Core-Shell Cu@rGO Hybrids Filled in Epoxy Composites with High Thermal Conduction. J. Mater. Chem. C 2018, 6, 257–265. DOI: 10.1039/C7TC04427E.
  • Wang, Z. M.; Cao, Y. Y.; Pan, D. C.; Hu, S. Vertically Aligned and Interconnected Graphite and Graphene Oxide Networks Leading to Enhanced Thermal Conductivity of Polymer Composites. Polymers 2020, 12, 1121. 10.3390/polym12051121.
  • Li, X.; Li, Y.; Alam, M. M.; Chen, P.; Xia, R.; Wu, B.; Qian, J. Enhanced Thermal Conductivity of Nanocomposites with MOF-Derived Encapsula-Ted Magnetic Oriented Carbon Nanotube-Grafted Graphene Polyhedra. RSC Adv. 2020, 10, 3357–3365. DOI: 10.1039/C9RA09199H.
  • Niu, C.; Lin, F.; Wang, Z. M.; Bao, J.; Hu, J. Graphene Levitation and Orientation Control Using a Magnetic Field. J. Appl. Phys. 2018, 123, 44302. DOI: 10.1063/1.5005539.
  • Du, C.; Li, M.; Cao, M.; Feng, S.; Guo, H.; Li, B. Enhanced Thermal and Mechanical Properties of Polyvinlydene Fluoride Composites with Magnetic Oriented Carbon Nanotube. Carbon 2018, 126, 197–207. DOI: 10.1016/j.carbon.2017.10.027.
  • Liu, M.; Younes, H.; Hong, H.; Peterson, G. P. Polymer Nanocomposites with Improved Mechanical and Thermal Properties by Magnetically Aligned Carbon Nanotubes. Polymer 2019, 166, 81–87. DOI: 10.1016/j.polymer.2019.01.031.
  • Zhou, C.; Ji, G.; Chen, Z.; Wang, M.; Addad, A.; Schryvers, D.; Wang, H. Fabrication, Interface Characterization and Modeling of Oriented Graphite Flakes/Si/Al Composites for Thermal Management Applications. Mater. Des. 2014, 63, 719–728. 10.1016/j.matdes.2014.07.009.
  • Inagaki, M.; Kaburagi, Y.; Hishiyama, Y. Thermal Management Material: Graphite. Adv. Eng. Mater. 2014, 16, 494–506 DOI: 10.1002/adem.201300418.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.