47
Views
0
CrossRef citations to date
0
Altmetric
Articles

Investigation of AC Conductivity Scaling and Dielectric Relaxation Dynamics of Chitosan/Iron Complexes

ORCID Icon & ORCID Icon
Pages 677-695 | Received 17 Dec 2021, Accepted 14 Jun 2022, Published online: 05 Jul 2022

References

  • Gao, H.; Liu, N.; Ni, S.; Lin, H.; Fu, Y. Xylan/Chitosan Composites Prepared by an Ionic Liquid System with Unique Antioxidant Properties. J. Bioresour. Bioprod. 2017, 2, 100–104. DOI: 10.21967/jbb.v2i3.83.
  • Wang, B.; Chen, K.; Jiang, S.; Reincke, F.; Tong, W.; Wang, D.; Gao, C. Chitosan-Mediated Synthesis of Gold Nanoparticles on Patterned Poly(dimethylsiloxane) Surfaces. Biomacromolecules 2006, 7, 1203–1209. DOI: 10.1021/bm060030f.
  • Nikolova, D.; Simeonov, M.; Tzachev, C.; Apostolov, A.; Christov, L.; Vassilev, E. Polyelectrolyte Complexes of Chitosan and Sodium Alginate as a Drug Delivery System for Diclofenac Sodium. Polym. Int. 2021, 70, 1–11. DOI: 10.1002/pi.6273.
  • Crini, G. Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review. Bioresour. Technol. 2006, 97, 1061–1085. DOI: 10.1016/j.biortech.2005.05.001.
  • Agrawal, P.; Strijkers, G. J.; Nicolay, K. Chitosan-Based Systems for Molecular Imaging. Adv. Drug Deliv. Rev. 2010, 62, 42–58. DOI: 10.1016/j.addr.2009.09.007.
  • Guibal, E. Interactions of Metal Ions with Chitosan-Based Sorbents: A Review. Sep. Purif. Technol. 2004, 38, 43–74. DOI: 10.1016/j.seppur.2003.10.004.
  • Varma, A.; Deshpande, S.; Kennedy, J. Metal Complexation by Chitosan and Its Derivatives: A Review. Carbohydr. Polym. 2004, 55, 77–93. DOI: 10.1016/j.carbpol.2003.08.005.
  • Fahmy, T.; Sarhan, A. Investigation of Optical Properties and Antibacterial Activity of Chitosan Copper Nanoparticle Composites. Mater. Technol. 2022, 37, 1–14. DOI: 10.1080/10667857.2022.2038497.
  • Xu, T. Ion Exchange Membranes: State of Their Development and Perspective. J. Membr. Sci. 2005, 263, 1–29. DOI: 10.1016/j.memsci.2005.05.002.
  • Sarhan, A.; Fahmy, T. Optical Properties, Antibacterial Activity and Relaxation Behavior Investigation of Chitosan/Green Synthesized Silver Nanoparticles by Thermally Stimulated Depolarization Current Technique. Polym. Sci. Ser. B 2021, 63, 578–590. DOI: 10.1134/S1560090421050110.
  • Roldughin, V. I.; Vysotskii, V. V. Percolation Properties of Metal-Filled Polymer Films, Structure and Mechanisms of Conductivity. Prog. Org. Coat. 2000, 39, 81–100. DOI: 10.1016/S0300-9440(00)00140-5.
  • Yazdani, M. R.; Virolainen, E.; Conley, K.; Vahala, R. Chitosan–Zinc(II) Complexes as a Bio-Sorbent for the Adsorptive Abatement of Phosphate: Mechanism of Complexation and Assessment of Adsorption Performance. Polymers 2017, 10, 25. DOI: 10.3390/polym10010025.
  • Neelakanta, P. S. Handbook of Electromagnetic Materials. CRC Press: Boca Raton, 1995. [ch. 7].
  • Moon, Y. I.; Jung, J. K.; Chung, K. S. Dielectric Relaxation Spectroscopy in Synthetic Rubber Polymers: Nitrile Butadiene Rubber and Ethylene Propylene Diene Monomer. Adv. Mater. Sci. Eng. 2020, 2020, 1–15. Article ID 8406059. https:/1155/2020/840/doi.org/10.6059 DOI: 10.1155/2020/8406059.
  • Lee, C. H.; Jung, J. K.; Jeon, S. K.; Ryu, K. S.; Baek, U. B. Nuclear Magnetic Resonance Study of O-Ring Polymer Exposed to High-Pressure Hydrogen. JMAG 2017, 22, 478–482. DOI: 10.4283/JMAG.2017.22.3.478.
  • Migahed, M. D.; Ishra, M.; El-Khodary, A.; Fahmy, T. Compatibility of Poly (Acrylonitrile-Butadiene) with Poly (Vinylchloride) as Explored by Thermally Stimulated Depolarization Current. Polym. Test. 1993, 12, 335–349. DOI: 10.1016/0142-9418(93)90039-R.
  • Zhang, F.; Zhao, Q.; Liu, T.; Lei, Y.; Chen, C. Preparation and Relaxation Dynamics of Ethylene-Propylene-Diene Rubber/Clay Nanocomposites with Crosslinking Interfacial Design. J. Appl. Polym. Sci. 2018, 135, 45553–45558. DOI: 10.1002/app.45553.
  • Fahmy, T.; Ahmed, M. T.; El-kotp, A.; Abdelwahed, H. G.; Alshaeer, M. Y. Broadband Dielectric Spectroscopy and Electric Modulus Analysis of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) and Related Copolymers Films. Int. J. Phys. Appl. 2016, 8, 1–14.
  • Migahed, M. D.; Ishra, M.; Fahmy, T.; Barakat, A. Electric Modulus and AC Conductivity Studies in Conducting PPy Composite Films at Low Temperature. J. Phys. Chem. Solids 2004, 65, 1121–1125. DOI: 10.1016/j.jpcs.2003.11.039.
  • Fahmy, T.; Elzanaty, H. AC Conductivity and Broadband Dielectric Spectroscopy of a Poly(Vinyl Chloride)/Poly(Ethyl Methacrylate) Polymer Blend. Bull. Mater. Sci. 2019, 42, 220–226. DOI: 10.1007/s12034-019-1906-1.
  • Samet, M.; Levchenko, V.; Boiteux, G.; Seytre, G.; Kallel, A.; Serghei, A. Electrode Polarization vs. Maxwell-Wagner-Sillars Interfacial Polarization in Dielectric Spectra of Materials: Characteristic Frequencies and Scaling Laws. J. Chem. Phys. 2015, 142, 194703–194713. DOI: 10.1063/1.4919877.
  • Fahmy, T. Dielectric Relaxation Spectroscopy of Poly (Vinyl Chloride-co-Vinyl Acetate-co-2-Hydroxypropyl Acrylate)/Poly (Acrylonitrile-Butadiene-Styrene) Polymer Blend. Polym. Plastics Tech. Eng. 2007, 46, 7–18. DOI: 10.1080/03602550600915136.
  • Fahmy, T.; Sarhan, A. Characterization and Molecular Dynamic Studies of Chitosan–Iron Complexes. Bull. Mater. Sci. 2021, 44, 142. DOI: 10.1007/s12034-021-02434-1.
  • Fahmy, T.; Elhendawi, H.; Elsharkawy, W. B.; Reicha, F. M. AC Conductivity and Dielectric Relaxation of Chitosan/Poly(Vinyl Alcohol) Biopolymer Polyblend. Bull. Mater. Sci. 2020, 43, 243. DOI: 10.1007/s12034-020-02207-2.
  • Chen, P.; Xie, F.; Tang, F.; McNally, T. Structure and Properties of Thermomechanically Processed Chitosan/Carboxymethyl Cellulose/Graphene Oxide Polyelectrolyte Complexed Bionanocomposites. Int. J. Biol. Macromol. 2020, 158, 420–429. DOI: 10.1016/j.ijbiomac.2020.04.259.
  • Bhatia, S. C.; Ravi, N. A Magnetic Study of an Fe-Chitosan Complex and Its Relevance to Other Biomolecules. Biomacromolecules 2000, 1, 413–417. DOI: 10.1021/bm0002959.
  • Pike, G. E. AC Conductivity of Scandium Oxide and a New Hopping Model for Conductivity. Phys. Rev. B 1972, 6, 1572–1580. DOI: 10.1103/PhysRevB.6.1572.
  • Ghosh, A. Frequency-Dependent Conductivity in Bismuth-Vanadate Glassy Semiconductors. Phys. Rev. B Condens. Matter 1990, 41, 1479–1488. DOI: 10.1103/physrevb.41.1479.
  • Long, A. R. Frequency-Dependent Loss in Amorphous Semiconductors. Adv. Phys. 1982, 31, 553–637. DOI: 10.1080/00018738200101418.
  • Murugaraj, R. Ac Conductivity and Its Scaling Behavior in Borate and Bismuthate Glasses. J. Mater. Sci. 2007, 42, 10065–10073. DOI: 10.1007/s10853-007-2052-5.
  • Limelette, P.; Schmaltz, B.; Brault, D.; Gouineau, M.; Lambert, C. A.; Roger, S.; Grimal, V.; Van, F. T. Conductivity Scaling and Thermoelectric Properties of Polyaniline Hydrochloride. J. Appl. Phys. 2014, 115, 033712. DOI: 10.1063/1.4862640.
  • Isard, J. O. Dielectric Dispersion in Amorphous Conductors. J. Non-Cryst. Solids 1970, 4, 357–365. DOI: 10.1016/0022-3093(70)90063-3.
  • Dyre, J. C.; Schroder, T. B. Universality of ac Conduction in Disordered Solids. Rev. Mod. Phys. 2000, 72, 873–892. DOI: 10.1103/RevModPhys.72.873.
  • Sidebottom, D. L.; Roling, B.; Funke, K. Ionic Conduction in Solids: Comparing Conductivity and Modulus Representations with Regard to Scaling Properties. Phys. Rev. B 2000, 63, 5068–7. DOI: 10.1103/PhysRevB.63.024301.
  • Macdonald, J. R. Scaling and Modeling in the Analysis of Dispersive Relaxation of Ionic Materials. J. Appl. Phys. 2001, 90, 153–161. DOI: 10.1063/1.1374480.
  • Patro, L. N.; Hariharan, K. AC Conductivity and Scaling Studies of Polycrystalline SnF2. Mater.Chem. Phys. 2009, 116, 81–87. DOI: 10.1016/j.matchemphys.2009.02.056.
  • Nath, A. K.; Kumar, A. Scaling of AC Conductivity, Electrochemical and Thermal Properties of Ionic Liquid Based Polymer Nanocomposite Electrolytes. Electrochim. Acta 2014, 129, 177–180. DOI: 10.1016/j.electacta.2014.02.101.
  • Chaurasia, S. K.; Saroj, A. L.; Singh, S. V. K.; Tripathi, A. K.; Gupta, A. K.; Verma, Y. L.; Singh, R. K. Studies on Structural, Thermal and AC Conductivity Scaling of PEO-LiPF6 Polymer Electrolyte with Added Ionic Liquid [BMIMPF6]. AIP Adv. 2015, 5, 077178–13. DOI: 10.1063/1.4927768.
  • Almond, D. P.; West, A. R. Anomalous Conductivity Prefactors in Fast Ion Conductors. Nature 1983, 306, 456–457. DOI: 10.1038/306456a0.
  • Ngai, K. L.; Moynihan, C. T. The Mixed Alkali Effect Revisited: The Importance of Ion–Ion Interactions. MRS Bull. 1998, 23, 51–56. DOI: 10.1557/S0883769400031006.
  • Sidebottom, D. L. Universal Approach for Scaling the ac Conductivity in Ionic Glasses. Phys. Rev. Lett. 1999, 82, 3653–3656. DOI: 10.1103/PhysRevLett.82.3653.
  • Fahmy, T.; Ahmed, M. T.; Sarhan, A.; Abdelwahed, H. G.; Alshaaer, M. AC Conductivity and Dielectric Spectroscopy of Poly (3-Hydroxybutyrateco-3-Hydroxyvalerate). Int. J. Appl. Eng. Res. 2016, 11, 9279–9288.
  • Fahmy, T.; Ahmed, M. T. Dielectric Relaxation Spectroscopy of Poly (Acrylonitrile-Butadiene-Styrene)/Styrene-Acrylonitrile Polymer Blend. J. Korean Phys. Soc. 2011, 58, 1654–1659. DOI: 10.3938/jkps.58.1654.
  • Fahmy, T.; Ahmed, M. T. Alternating-Current Conductivity and Dielectric Relaxation of Poly (Acrylonitrile-Butadiene-Styrene) Terpolymer Doped with Tetrabutylammonium Tetrafluoroborate. J. Polym. Mater. 2003, 20, 367–376.
  • Fahmy, T. Dielectric Relaxation and Electrical Conductivity Study in Thiourea-Doped Poly (Vinyl Alcohol). Int. J. Polym. Mater. 2001, 50, 109–127. DOI: 10.1080/00914030108035094.
  • Bhattacharya, S.; Ghosh, A. AC Relaxation in Silver Vanadate Glasses. Phys. Rev. B 2003, 68, 224202–224205. DOI: 10.1103/PhysRevB.68.224202.
  • Dutta, R.; Kumar, A. Dielectric Relaxation Dynamics and AC Conductivity Scaling of Metal-Organic Framework (MOF-5) Based Polymer Electrolyte Nanocomposites Incorporated with Ionic Liquid. J. Phys. D: Appl. Phys. 2017, 50, 425302–425311. DOI: 10.1088/1361-6463/aa84ef.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.