80
Views
3
CrossRef citations to date
0
Altmetric
Articles

Performance of SiO2 Filled Functional Polypropylene Substrates for 5th Generation Communication

, , , &
Pages 696-718 | Received 20 Nov 2021, Accepted 17 Jun 2022, Published online: 09 Jul 2022

References

  • Saad, W.; Bennis, M.; Chen, M.-Z. A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems. IEEE Netw. 2020, 34, 134–142. DOI: 10.1109/MNET.001.1900287.
  • Shi, H.-Y.; Liu, X.-W.; Lou, Y. Materials and Micro Drilling of High Frequency and High Speed Printed Circuit Board: A Review. Int. J. Adv. Manuf. Technol. 2019, 100, 827–841. DOI: 10.1007/s00170-018-2711-5.
  • Anjana, P. S.; Sebastian, M. T.; Suma, M. N.; Mohanan, P. Low Dielectric Loss PTFE/CeO2 Ceramic Composites for Microwave Substrate Applications. Int. J. Appl. Ceram. Technol. 2008, 5, 325–333. DOI: 10.1111/j.1744-7402.2008.02228.x.
  • Gonon, P.; Sylvestre, A. Dielectric Properties of Fluorocarbon Thin Films Deposited by Radio Frequency Sputtering of Polytetrafluoroethylene. J. Appl. Phys 2002, 92, 4584–4589. DOI: 10.1063/1.1505983.
  • Chen, C.-C.; Chen, C.-H.; Chen, M.-L. Study of Naphthalene Epoxy Resin for Low CTE Copper Clad Laminate. In Microsystems, Packaging, Assembly & Circuits Technology Conference, Impact International, 2009; pp 247–250. DOI: 10.1109/IMPACT.2009.5382127.
  • Yasuda, N.; Ishikawa, H. Polyimide Film and Copper-Clad Laminate Using It as Base Material. US Patent 20090068403, 2009.
  • Subodh, G.; Manjusha, M.-V.; Philip, J.; Sebastian, M.-T. Thermal Properties of Polytetrafluoroethylene/Sr2Ce2Ti5O16 Polymer/Ceramic Composites. J. Appl. Polym. Sci 2008, 108, 1716–1721. DOI: 10.1002/app.27606.
  • Akhtar, M.-J.; Feher, L.; Thumm, M. Measurement of Dielectric Constant and Loss Tangent of Epoxy Resins Using a Waveguide Approach. In Antennas & Propagation Society International Symposium. 2006.
  • Carter, K.-R.; Dipietro, R.-A.; Sanchez, M.-I.; Swanson, S.-A. Nanoporous Polyimides Derived from Highly Fluorinated Polyimide/Poly(Propylene Oxide) Copolymers. Chem. Mater 2001, 13, 213–221. DOI: 10.1021/cm990707o.
  • Zhou, Y.; Hong, W. An Al@Al2O3@SiO2/Polyimide Composite with Multilayer Coating Structure Fillers Based on Self-Passivated Aluminum Cores. Appl. Phys. Lett 2013, 102, 132901–131114. DOI: 10.1063/1.4798837.
  • Hasegawa, M.; Tsujimura, Y.; Koseki, K.; Miyazaki, T. Poly(Ester Imide)s Possessing Low CTE and Low Water Absorption (II). Effect of Substituents. Polym J 2008, 40, 56–67. DOI: 10.1295/polymj.PJ2007142.
  • Araki, Y. Stress Relaxation of Polytetrafluoroethylene in the Vicinity of Its Glass Transition Temperature at about 130 °C. J. Appl. Polym. Sci 1965, 9, 1515–1524. DOI: 10.1002/app.1965.070090426.
  • Sun, H.; Cooke, R.-S.; Bates, W.-D.; Wynne, K.-J. Supercritical CO2 Processing and Annealing of Polytetrafluoroethylene (PTFE) and Modified PTFE for Enhancement of Crystallinity and Creep Resistance. Polymer 2005, 46, 8872–8882. DOI: 10.1016/j.polymer.2005.05.134.
  • Cho, S. H.; Yoon, Y. J.; Kim, H. T.; Kim, J.; Kim, H.-J.; Nam, S. M.; Baik, H. K.; Kim, J.-H. Growth of Al2O3-PTFE Composite Film at Room Temperature by Aerosol Deposition Method. Ceram. Int 2012, 38, S131–S134. DOI: 10.1016/j.ceramint.2011.04.066.
  • Kaushal, S.; Hasegawa, Y.; Hosono, R.; Yamamoto, R.; Guan, N. 2018 Millimeter-Wave Array Antennas Based on Liquid Crystal Polymer. In 2018 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). DOI: 10.1109/APWC.2018.8503676.
  • Cuneray, K.; Akcam, N. 2019 LCP Substrate Based Crescent Shaped Microstrip Patch Array Antenna Design for 5G Applications. In 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). DOI: 10.1109/ISMSIT.2019.8932745.
  • Tsuchiya, A.; Sugama, H.; Sunamoto, T.; Hidaka, N.; Hashimoto, O. Low-Loss and High-Speed Transmission Flexible Printed Circuits Based on Liquid Crystal Polymer Films. Electron. Lett 2012, 48, 1216–1217. DOI: 10.1049/el.2012.2779.
  • Zhou, M.; Zhang, W.; Ding, D.; Li, M. Electroless and Eletroplating Copper on Liquid Crystal Polymer (LCP) for High Frequency Applications. in International Conference on Electronic Packaging Technology & High Density Packaging. 2011.
  • Yung, K.-C.; Liem, H.; Choy, H.; Yue, T.-M. A Study of Critical Processing Technologies of Liquid Crystal Polymer Printed Circuit Board for High Speed Application. J. Appl. Polym. Sci 2010, 116, 2348–2358. DOI: 10.1002/app.31728.
  • Andrews, J. G.; Buzzi, S.; Choi, W.; Hanly, S. V.; Lozano, A.; Soong, A. C. K.; Zhang, J. C. What Will 5G Be? IEEE J. Select. Areas Commun 2014, 32, 1065–1082. DOI: 10.1109/JSAC.2014.2328098.
  • Santiago-Aviles, A.-J. Thin-Film Polypropylene Capacitors. SUNFEST Technical Report TR-CST01DEC05. Center for Sensor Technologies, Dept of Electrical and Systems Eng, Univ. of Pennsylvania: Philadelphia, 2005; pp 1–16.
  • Anderson, E.-W.; Mccall, D.-W. The Dielectric Constant and Loss of Polypropylene. J. Polym. Sci. A. Polym. Chem. 1958, 31, 241–242. DOI: 10.1002/pol.1958.1203112247.
  • Espert, A.; L.-a.-D.-L, H.; Karlsson, S. Emission of Possible Odourous Low Molecular Weight Compounds in Recycled Biofibre/Polypropylene Composites Monitored by Head-Space SPME-GC–MS. Polym. Degrad. Stab 2005, 90, 555–562. DOI: 10.1016/j.polymdegradstab.2005.03.009.
  • Benny, S. High-Frequency 5G Wireless Infrastructure Requires a New Approach to PCB Manufacturing. Eval. Eng. Mag. Electron. Eval 2018, 57, 18–19.
  • Li, C.-Q.; Wang, J.; Ning, M.-M.; Zhang, H.-P. Synthesis and Antioxidant Activities in Polyolefin of Dendritic Antioxidants with Hindered Phenolic Groups and Tertiary Amine. J. Appl. Polym. Sci 2012, 124, 4127–4135. DOI: 10.1002/app.35324.
  • Li, H.-Q.; Lai, X.-J.; Wu, W.-J.; Zeng, X.-R. Synthesis and Antioxidative Properties of a Star-Shaped Macromolecular Antioxidant Based on β-Cyclodextrin. Mater. Lett 2015, 151, 72–74. DOI: 10.1016/j.matlet.2015.03.051.
  • Wilen, C.-E.; Nasman, J.-H. Polar Activation in Copolymerization of Propylene and 6-tert-Butyl-[2-(1,1-Dimethylhept-6-Enyl)]-4-Methylphenol over a Racemic [1, 1'-(Dimethylsilylene)Bis(.Eta.5-4, 5, 6, 7-Tetrahydro-1-Indenyl)]Zirconium Dichloride/Methylalumoxane Catalyst System. Macromolecules 1994, 27, 4051–4057. DOI: 10.1021/ma00093a004.
  • Lin, W.-T.; Shao, Z.; Dong, J.-Y.; Chung, T.-C.-M. Cross-Linked Polypropylene Prepared by PP Copolymers Containing Flexible Styrene Groups. Macromolecules 2009, 42, 3750–3754. DOI: 10.1021/ma9002775.
  • Yuan, X.-P.; Chung, T.-C.-M. Cross-Linking Effect on Dielectric Properties of Polypropylene Thin Films and Applications in Electric Energy Storage. Appl. Phys. Lett 2011, 98, 062901. DOI: 10.1063/1.3552710.
  • Emanuel, N.-M. Chemical Physics of Polymer Degradation and Stabilization; VNU Science Press: Utrecht, The Netherlands, 1987.
  • Al-Malaika, S. Effects of Antioxidants and Stabilizers. Compr. Polym. Sci. Suppl. 1989, 19, 539–578. DOI: 10.1016/b978-0-08-096701-1.00199-3.
  • Rodriguez-Perez, M.-A. Crosslinked Polyolefin Foams: Production, Structure, Properties, and Applications. Adv. Polym. Sci. 2005, 184, 97–98. DOI: 10.1007/b136244.
  • Ivan, C. Properties of Crosslinked Polyolefin-Based Materials. Prog. Polym. Sci 1995, 20, 1165–1199. DOI: 10.1016/0079-6700(95)98859-N.
  • Zhang, G.; Nam, C.; Chung, T. C. M.; Petersson, L.; Hillborg, H. Polypropylene Copolymer Containing Cross-Linkable Antioxidant Moieties with Long-Term Stability under Elevated Temperature Conditions. Macromolecules 2017, 50, 7041–7053. DOI: 10.1021/acs.macromol.7b01235.
  • Baldwin, A.-F.; Ma, R.; Wang, C.-C.; Ramprasad, R.; Sotzing, G.-A. Structure–Property Relationship of Polyimides Based on Pyromellitic Dianhydride and Short‐Chain Aliphatic Diamines for Dielectric Material Applications. J. Appl. Polym. Sci 2013, 130, 1276–1280. DOI: 10.1002/app.39240.
  • Zhang, G.; Li, H.-X.; Antensteiner, M.; Chung, T.-C.-M. Synthesis of Functional Polypropylene Containing Hindered Phenol Stabilizers and Applications in Metallized Polymer Film Capacitors. Macromolecules 2015, 48, 2925–2934. DOI: 10.1021/acs.macromol.5b00439.
  • Lai, Y.-H.; Kuo, M.-C.; Huang, J.-C.; Chen, M. On the PEEK Composites Reinforced by Surface-Modified Nano-Silica. Mater. Sci. Eng, A 2007, 458, 158–169. DOI: 10.1016/j.msea.2007.01.085.
  • Hao, J.-M.; Wei, Y.-F.; Li, X.-S.; Mu, J.-X. Poly(Arylene Ether Ketone)s with Low Dielectric Constants Derived from Polyhedral Oligomeric Silsesquioxane and Difluorinated Aromatic Ketones. J. Appl. Polym. Sci 2018, 135, 46084–46093. DOI: 10.1002/app.46084.
  • Lu, Y.; Zhang, S.; Geng, Z.; Zhu, K.; Zhang, M.; Na, R.; Wang, G. Hybrid Formation of Graphene oxide-POSS and Their Effect on the Dielectric Properties of Poly(Aryl Ether Ketone) Composites. New J. Chem. 2017, 41, 3089–3096. DOI: 10.1039/x0xx00000x.
  • Geng, Z.; Zhang, S.-L.; Mu, J.-X.; Jiang, X.; Huo, P.-F.; Lu, Y.-N.; Luan, J.-S.; Wang, G.-B. Design and Preparation of Poly(Aryl Ether Ketone)/Phosphotungstic Acid Hybrid Films with Low Dielectric Constant. J. Appl. Polym. Sci 2013, 129, 3219–3225. DOI: 10.1002/app.39047.
  • Geng, Z.; Huo, M.-X.; Mu, J.-X.; Zhang, S.-L.; Lu, Y.-N.; Luan, J.-S.; Huo, P.-F. Ultra Low Dielectric Constant Soluble Polyhedral Oligomeric Silsesquioxane (POSS)–Poly(Aryl Ether Ketone) Nanocomposites with Excellent Thermal and Mechanical Properties. J. Mater. Chem. C 2014, 2, 6. DOI: 10.1039/c3tc31557f.
  • Lin, Q.; Cohen, S. A.; Gignac, L.; Herbst, B.; Klaus, D.; Simonyi, E.; Hedrick, J.; Warlaumont, J.; Lee, H.-J.; Wu, W-l. Low Dielectric Constant Nanocomposite Thin Films Based on Silica Nanoparticle and Organic Thermosets. J. Polym. Sci. B Polym. Phys. 2007, 45, 1482–1493. DOI: 10.1002/polb.21165.
  • Lin, J.-J.; Wang, X.-D. Novel Low-k Polyimide/Mesoporous Silica Composite Films: Preparation, Microstructure, and Properties. Polymer 2007, 48, 318–329. DOI: 10.1016/j.polymer.2006.10.037.
  • Wahab, M.-A.; Mya, K.-Y.; He, C.-B. Synthesis, Morphology, and Properties of Hydroxyl terminated-POSS/Polyimide Low-k Nanocomposite Films. J. Polym. Sci. A Polym. Chem 2008, 46, 5887–5896. DOI: 10.1002/pola.22906.
  • Keshtov, M.; Said-Galiev, E.; Kochurov, V.; Khokhlov, A. New Polyimide-Polyoxometalate Nanocomposite Materials with Nanoporous Structure and Ultra-Low Dielectric Constant, Formed in Supercritical Carbon Dioxide. Funct. Polym., Am. Institut. Phys. 2012, 54, 323–336.
  • Zhang, S.; Yan, Y.-H.; Li, X.-D.; Fan, H.-J.; Ran, Q.-C.; Fu, Q.; Gu, Y. A Novel Ultra Low-k Nanocomposites of Benzoxazinyl Modified Polyhedral Oligomeric Silsesquioxane and Cyanate Ester. Eur. Polym. J. 2018, 103, 124–132. DOI: 10.1016/j.eurpolymj.2018.03.013.
  • Vaisakh, S. S.; Hassanzadeh, M.; Metz, R.; Ramakrishnan, S.; Chappelle, D.; Sudha, J. D.; Ananthakumar, S. Effect of Nano/Micro-Mixed Ceramic Fillers on the Dielectric and Thermal Properties of Epoxy Polymer Composites. Polym. Adv. Technol 2014, 25, 240–248. DOI: 10.1002/pat.3230.
  • Singha, S.; Thomas, M.-J. Dielectric Properties of Epoxy Nanocomposites. IEEE Trans. Dielect. Electr. Insul. 2008, 15, 12–23. DOI: 10.1109/T-DEI.2008.4446732.
  • Santanu, S.; Joy, T.-M. Permittivity and Tan Delta Characteristics of Epoxy Nanocomposites in the Frequency Range of 1 MHz-1 GHz. Dielectrics Electrical Insulation. IEEE Trans 2008, 15, 2–11. DOI: 10.1109/T-DEI.2008.4446731.
  • Feng, Y.; Wang, C.; Liu, H.-S. Low Dielectric Constant of Polymer Based Composites Induced by the Restricted Polarizability in the Interface. Mater. Lett 2016, 185, 491–494. DOI: 10.1016/j.matlet.2016.09.062.
  • Huang, Y.-W.; Wei, X.-N.; Liu, L.-L.; Yu, H.-T.; Yang, J.-X. A Novel Pore-Free Strategy via Interfacial Effects in Nanocomposites to Produce Polyethylene with Ultra-Low Dielectric Constants. Mater. Lett 2018, 232, 86–91. DOI: 10.1016/j.matlet.2018.08.084.
  • Zhang, G.; Nam, C.; Petersson, L.; Jämbeck, J.; Hillborg, H.; Chung, T. C. M. Increasing Polypropylene High Temperature Stability by Blending Polypropylene-Bonded Hindered Phenol Antioxidant. Macromolecules 2018, 51, 1927–1936. DOI: 10.1021/acs.macromol.7b02720.
  • Yuan, J.-M.; Feng, Y.-R.; Wu, Z.-J.; Wang, Y.-J.; Li, S.; Sun, Y.-P. A Carbon Fiber Network/Polypropylene Composite with a Low Thermal Expansion Coefficient and High Stiffness. Xinxing Tan Cailiao/New Carbon Mater. 2017, 32, 271–276. DOI: 10.1016/j.carbon.2017.06.069.
  • Okaji, M.; Yamada, N.; Kato, H.; Nara, K. Measurements of Linear Thermal Expansion Coefficients of Copper SRM 736 and some Commercially Available Coppers in the Temperature Range 20–300 K by Means of an Absolute Interferometric Dilatometer. Bull. NRLM 1997, 46, 251–254. DOI: 10.1016/S0011-2275(97)00010-6.
  • Gong, J.; Gong, W.; Gong, Z.; Gao, S.; Wang, B. Investigation of Free Volume Distribution and Mechanical Properties of Rectorite/Nylon 6 Nanocomposites. Polym. Eng. Sci. 2012, 52, 1701–1707. DOI: 10.1002/pen.23127.
  • Deng, Q.; Sundar, C.-S.; Jean, Y.-C. Pressure Dependence of Free-Volume Hole Properties in an Epoxy Polymer. J. Phys. Chem 1992, 96, 492–495. DOI: 10.1021/j100180a088.
  • Sclavons, M.; Franquinet, P.; Carlier, V.; Verfaillie, G.; Fallais, I.; Legras, R.; Laurent, M.; Thyrion, F. C. Quantification of the Maleic Anhydride Grafted onto Polypropylene by Chemical and Viscosimetric Titrations, and FTIR Spectroscopy. Polymer 2000, 41, 1989–1999. DOI: 10.1016/S0032-3861(99)00377-8.
  • Nguyen, H.-X.; Ishida, H. Molecular Analysis of the Melting Behaviour of Poly(Aryl-Ether-Ether-Ketone). Polymer 1986, 27, 1400–1405. DOI: 10.1016/0032-3861(86)90041-8.
  • Wen, X.; Wang, Y.; Gong, J.; Liu, J.; Tian, N.; Wang, Y.; Jiang, Z.; Qiu, J.; Tang, T. Thermal and Flammability Properties of Polypropylene/Carbon Black Nanocomposites. Polym. Degrad. Stab 2012, 97, 793–801. DOI: 10.1016/j.polymdegradstab.2012.01.031.
  • CAI, H.; BI, D.; SHAO, K.; ZHONG, S.; NA, H. Influence of Backbone Structure on Properties of Directly Polymerized Phenoxy Resins from Epichlorohydrin and Various Aromatic Dihydric Phenols Monomers. Chem. Res. Chin. Univ 2007, 23, 607–612. DOI: 10.1016/S1005-9040(07)60132-9.
  • Golebiewski, J.; Galeski, A. Thermal Stability of Nanoclay Polypropylene Composites by Simultaneous DSC and TGA. Compos. Sci. Technol 2007, 67, 3442–3447. DOI: 10.1016/j.compscitech.2007.03.007.
  • Goyal, R.-K.; Rokade, K.-A.; Kapadia, A.-S. Study on Novel High Performance Polymer Nanocomposites for Electronics Packaging Paper. IEEE Commun. Mag 2011, 376–380. DOI: 10.1109/ICONSET.2011.6167985.
  • Luo, Z.; Yang, Z.; Fei, Z.; Li, K. Effect of Crosslinking Rate on the Glass Transition Temperature of Polyimide Cross-Linked Silica Aerogels. J. Polym. Res 2020, 27, 1–9. DOI: 10.1007/s10965-020-02082-9.
  • Blair, S.-A.; Thakkar, A.-J. Relating Polarizability to Volume, Ionization Energy, Electronegativity, Hardness, Moments of Momentum, and Other Molecular Properties. J. Chem. Phys. 2014, 141, 163–167. DOI: 10.1063/1.4893178.
  • Blair, S.-A.; Thakkar, A.-J. Additive Models for the Molecular Polarizability and Volume. Chem. Phys. Lett 2014, 610, 163–166. DOI: 10.1016/j.cplett.2014.07.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.