127
Views
2
CrossRef citations to date
0
Altmetric
Articles

Synergistic Effects of Multi-Wall Carbon Nanotubes and Polycaprolactone on the Thermal and Mechanical Properties of Polylactic Acid

ORCID Icon &
Pages 719-740 | Received 01 Feb 2022, Accepted 24 Jun 2022, Published online: 13 Jul 2022

References

  • Mohanty, A. K.; Misra, M.; Hinrichsen, G. Biofibres, Biodegradable Polymers and Biocomposites: An Overview. Macromol. Mater. Eng. 2000, 276–277, 1–24. DOI: 10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W.
  • Fortelný, I.; Ostafińska, A.; Michálková, D.; Jůza, J.; Mikešová, J.; Šlouf, M. Phase Structure Evolution during Mixing and Processing of Poly(Lactic Acid)/Polycaprolactone (PLA/PCL) Blends. Polym. Bull. 2015, 72, 2931–2947. DOI: 10.1007/s00289-015-1445-x.
  • Hamad, K.; Kaseem, M.; Ayyoob, M.; Joo, J.; Deri, F. Polylactic Acid Blends: The Future of Green, Light and Tough. Prog. Polym. Sci. 2018, 85, 83–127. DOI: 10.1016/j.progpolymsci.2018.07.001.
  • Zhao, X.; Hu, H.; Wang, X.; Yu, X.; Zhou, W.; Peng, S. Super Tough Poly(Lactic Acid) Blends: A Comprehensive Review. RSC Adv. 2020, 10, 13316–13368. DOI: 10.1039/d0ra01801e.
  • Babu, R. P.; O'Connor, K.; Seeram, R. Current Progress on Bio-Based Polymers and Their Future Trends. Prog. Biomater. 2013, 2, 8–16. DOI: 10.1186/2194-0517-2-8.
  • Rasal, R. M.; Janorkar, A. v.; Hirt, D. E. Poly(Lactic Acid) Modifications. Prog. Polym. Sci. 2010, 35, 338–356. DOI: 10.1016/j.progpolymsci.2009.12.003.
  • Zeng, J. B.; Li, K. A.; Du, A. K. Compatibilization Strategies in Poly(Lactic Acid)-Based Blends. RSC Adv. 2015, 5, 32546–32565. DOI: 10.1039/C5RA01655J.
  • Broz, M. E.; VanderHart, D. L.; Washburn, N. R. Structure and Mechanical Properties of Poly(D,L-Lactic Acid)/Poly(ε-Caprolactone) Blends. Biomaterials. 2003, 24, 4181–4190. DOI: 10.1016/S0142-9612(03)00314-4.
  • Salehiyan, R.; Yussuf, A. A.; Hanani, N. F.; Hassan, A.; Akbari, A. Polylactic Acid/Polycaprolactone Nanocomposite: Influence of Montmorillonite and Impact Modifier on Mechanical, Thermal, and Morphological Properties. J. Elastom. Plast. 2015, 47, 69–87. DOI: 10.1177/0095244313489906.
  • Khitas, N.; Aouachria, K.; Benaniba, M. T. Blending and Plasticising Effects on the Behaviour of Poly(Lactic Acid)/Poly(ϵ-Caprolactone). Polym. Polym. Compos. 2018, 26, 337–345. DOI: 10.1177/0967391118795970.
  • Zhou, Y.; Lei, L.; Yang, B.; Li, J.; Ren, J. Preparation and Characterization of Polylactic Acid (PLA) Carbon Nanotube Nanocomposites. Polym. Test. 2018, 68, 34–38. DOI: 10.1016/j.polymertesting.2018.03.044.
  • Aghjeh, M. R.; Nazari, M.; Khonakdar, H. A.; Jafari, S. H.; Wagenknecht, U.; Heinrich, G. In Depth Analysis of Micro-Mechanism of Mechanical Property Alternations in PLA/EVA/Clay Nanocomposites: A Combined Theoretical and Experimental Approach. Mater. Des. 2015, 88, 1277–1289. DOI: 10.1016/j.matdes.2015.09.081.
  • Gonçalves, C.; Gonçalves, I. C.; Magalhães, F. D.; Pinto, A. M. Poly(Lactic Acid) Composites Containing Carbon-Based Nanomaterials: A Review. Polymers (Basel). 2017, 9, 269. DOI: 10.3390/polym9070269.
  • Kuan, C. F.; Kuan, H. C.; Ma, C. C. M.; Chen, C. H. Mechanical and Electrical Properties of Multi-Wall Carbon Nanotube/Poly(Lactic Acid) Composites. J. Phys. Chem. Solids. 2008, 69, 1395–1398. DOI: 10.1016/j.jpcs.2007.10.060.
  • Tsuji, H.; Kawashima, Y.; Takikawa, H.; Tanaka, S. Poly(l-Lactide)/Nano-Structured Carbon Composites: Conductivity, Thermal Properties, Crystallization, and Biodegradation. Polymer (Guildf). 2007, 48, 4213–4225. DOI: 10.1016/j.polymer.2007.05.040.
  • Mat Desa, M. S. Z.; Hassan, A.; Arsad, A.; Mohammad, N. N. B. Mechanical Properties of Poly(Lactic Acid)/Multiwalled Carbon Nanotubes Nanocomposites Mater. Res. Innov. 2014, 18, S6-14–S6-17. DOI: 10.1179/1432891714Z.000000000924.
  • Park, S. H.; Lee, S. G.; Kim, S. H. Isothermal Crystallization Behavior and Mechanical Properties of Polylactide/Carbon Nanotube Nanocomposites. Compos. A, Appl. Sci. Manuf. 2013, 46, 11–18. DOI: 10.1016/j.compositesa.2012.10.011.
  • Jamshidian, M.; Tehrany, E. A.; Imran, M.; Jacquot, M.; Desobry, S. Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552–571. DOI: 10.1111/j.1541-4337.2010.00126.x.
  • Yin, H. Y.; Wei, X. F.; Bao, R. Y.; Dong, Q. X.; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M. B. High-Melting-Point Crystals of Poly(l-Lactic Acid) (PLLA): The Most Efficient Nucleating Agent to Enhance the Crystallization of PLLA. Cryst. Eng. Commun. 2015, 17, 2310–2320. DOI: 10.1039/C4CE02497D.
  • Alhaddad, O.; El-taweel, S. H.; Elbahloul, Y. Nonisothermal Cold Crystallization Kinetics of Poly (Lactic Acid) /Bacterial Poly (Hydroxyoctanoate) (PHO)/Talc. Open Chem. 2019, 17, 1266–1278. DOI: 10.1515/chem-2019-0138.
  • Zhao, L.; Liu, X.; Zhang, R.; He, H.; Jin, T.; Zhang, J. Unique Morphology in Polylactide/Graphene Oxide Nanocomposites. J. Macromol. Sci. B, Phys. 2015, 54, 45–57. DOI: 10.1080/00222348.2014.984574.
  • Papageorgiou, G. Z.; Achilias, D. S.; Nanaki, S.; Beslikas, T.; Bikiaris, D. PLA Nanocomposites: Effect of Filler Type on Non-Isothermal Crystallization. Thermochim. Acta. 2010, 511, 129–139. DOI: 10.1016/j.tca.2010.08.004.
  • Khoshrou, S.; Moghbeli, M. R.; Ghasemi, E. Polysulfone/Carbon Nanotubes Asymmetric Nanocomposite Membranes: Effect of Nanotubes Surface Modification on Morphology and Water Permeability. Iran. J. Chem. Eng. 2015, 12, 69–83.
  • Norazlina, H.; Hadi, A. A.; Qurni, A. U.; Amri, M.; Mashelmie, S.; Kamal, Y. Effects of Multi-Walled Carbon Nanotubes (MWCNTS) on the Degradation Behavior of Plasticized PLA Nanocomposites. Polym. Bull. 2019, 76, 1453–1469. DOI: 10.1007/s00289-018-2454-3.
  • Höhne, G. W. H.; Hemminger, W. F.; Flammersheim, H.-J. Theoretical Fundamentals of Differential Scanning Calorimeters. In Differential Scanning Calorimetry; Springer: Berlin, Heidelberg, 2003; pp 31–63. DOI: 10.1007/978-3-662-06710-9_3.
  • Zhu, G.; Xu, Q.; Qin, R.; Yan, H.; Liang, G. Effect of -Radiation on Crystallization of Polycaprolactone. Radiat. Phys. Chem. 2005, 74, 42–50. DOI: 10.1016/j.radphyschem.2004.11.006.
  • El‐Taweel, S. H.; Abboudi, M. Nonisothermal Crystallization Kinetics of PLA/Nanosized YVO 4 Composites as a Novel Nucleating Agent. J. Appl. Polym. Sci. 2020, 137, 48340. DOI: 10.1002/app.48340.
  • Cebe, P.; Hong, S. D. Crystallization Behaviour of Poly(Ether-Ether-Ketone). Polymer (Guildf). 1986, 27, 1183–1192. DOI: 10.1016/0032-3861(86)90006-6.
  • Chen, H.; Pyda, M.; Cebe, P. Non-Isothermal Crystallization of PET/PLA Blends. Thermochim. Acta. 2009, 492, 61–66. DOI: 10.1016/j.tca.2009.04.023.
  • Jeziorny, A. Parameters Characterizing the Kinetics of the Non-Isothermal Crystallization of Poly(Ethylene Terephthalate) Determined by d.s.c. Polymer (Guildf). 1978, 19, 1142–1144. DOI: 10.1016/0032-3861(78)90060-5.
  • Giacobazzi, G.; Rizzuto, M.; Zubitur, M.; Mugica, A.; Caretti, D.; Müller, A. J. Crystallization Kinetics as a Sensitive Tool to Detect Degradation in Poly(Lactide)/Poly(ε-Caprolactone)/PCL-Co-PC Copolymers Blends. Polym. Degrad. Stab. 2019, 168, 108939–108952. DOI: 10.1016/j.polymdegradstab.2019.108939.
  • Wachirahuttapong, S.; Thongpin, C.; Sombatsompop, N. Effect of PCL and Compatibility Contents on the Morphology, Crystallization and Mechanical Properties of PLA/PCL Blends. Energy Procedia. 2016, 89, 198–206. DOI: 10.1016/j.egypro.2016.05.026.
  • Wang, L.; Qiu, J.; Sakai, E.; Wei, X. The Relationship between Microstructure and Mechanical Properties of Carbon Nanotubes/Polylactic Acid Nanocomposites Prepared by Twin-Screw Extrusion. Compos. A: Appl. Sci. Manuf. 2016, 89, 18–25. DOI: 10.1016/j.compositesa.2015.12.016.
  • Amirian, M.; Chakoli, A. N.; Cai, W.; Sui, J. Effect of Functionalized Multiwalled Carbon Nanotubes on Thermal Stability of Poly (L-LACTIDE). Biodegradable Polym. Sci. Iran. 2013, 20, 1023–1027. DOI: 10.1016/j.scient.2013.05.019.
  • Azizi, S.; Azizi, M.; Sabetzadeh, M. The Role of Multiwalled Carbon Nanotubes in the Mechanical, Thermal, Rheological, and Electrical Properties of Pp/Pla/MWCNTS Nanocomposites. J. Compos. Sci. 2019, 3, 64. DOI: 10.3390/jcs3030064.
  • Patrício, T.; Bártolo, P. Thermal Stability of PCL/PLA Blends Produced by Physical Blending Process. Procedia Eng. 2013, 59, 292–297. DOI: 10.1016/j.proeng.2013.05.124.
  • Urquijo, J.; Guerrica-Echevarría, G.; Eguiazábal, J. I. Melt Processed PLA/PCL Blends: Effect of Processing Method on Phase Structure, Morphology, and Mechanical Properties. J. Appl. Polym. Sci. 2015, 132, 1–9. DOI: 10.1002/app.42641.
  • Mofokeng, J. P.; Luyt, A. S. Morphology and Thermal Degradation Studies of Melt-Mixed Poly(Lactic Acid) (PLA)/Poly(ε-Caprolactone) (PCL) Biodegradable Polymer Blend Nanocomposites with TiO2 as Filler. Polym. Test. 2015, 45, 93–100. DOI: 10.1016/j.polymertesting.2015.05.007.
  • Tien, N.-D.; Prud’homme, R. E. Crystallization Behavior of Semicrystalline Immiscible Polymer Blends. Crystallization in Multiphase Polymer Systems; Elsevier Inc.: Amsterdam, Netherlands, 2018; pp 181–212. DOI: 10.1016/B978-0-12-809453-2.00007-4.
  • Zhao, Y.; Qiu, Z.; Yang, W. Effect of Multi-Walled Carbon Nanotubes on the Crystallization and Hydrolytic Degradation of Biodegradable Poly(l-Lactide). Compos. Sci. Technol. 2009, 69, 627–632. DOI: 10.1016/j.compscitech.2008.12.008.
  • El-Taweel, S. H.; Al-Ahmadi, A. Non-Isothermal Crystallization Kinetics of Poly(3-Hydroxybutyrate)/EVA 80 Blends Enhanced by NH4Cl as a Nucleating Agent. J. Therm. Anal. Calorim. 2019, 137, 1657–1672. DOI: 10.1007/s10973-019-08032-y.
  • Ge, X. G.; George, S.; Law, S.; Sain, M. Mechanical Properties and Morphology of Polylactide Composites with Acrylic Impact Modifier. J. Macromol. Sci. B, Phys. 2011, 50, 2070–2083. DOI: 10.1080/00222348.2011.557585.
  • Weng, Y.-X. X.; Jin, Y.-J. J.; Meng, Q.-Y. Y.; Wang, L.; Zhang, M.; Wang, Y.-Z. Z. Biodegradation Behavior of Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Lactic Acid) (PLA), and Their Blend under Soil Conditions. Polym. Test. 2013, 32, 918–926. DOI: 10.1016/j.polymertesting.2013.05.001.
  • Pisani, S.; Dorati, R.; Conti, B.; Modena, T.; Bruni, G.; Genta, I. Design of Copolymer PLA-PCL Electrospun Matrix for Biomedical Applications. React. Funct. Polym. 2018, 124, 77–89. DOI: 10.1016/j.reactfunctpolym.2018.01.011.
  • Anderson, K. S.; Schreck, K. M.; Hillmyer, M. A. Toughening Polylactide. Polymer Revs. 2008, 48, 85–108. DOI: 10.1080/15583720701834216.
  • Piorkowska, E.; Kulinski, Z.; Galeski, A.; Masirek, R. Plasticization of Semicrystalline Poly(l-Lactide) with Poly(Propylene Glycol). Polymer (Guildf). 2006, 47, 7178–7188. DOI: 10.1016/j.polymer.2006.03.115.
  • Ostafinska, A.; Fortelný, I.; Hodan, J.; Krejčíková, S.; Nevoralová, M.; Kredatusová, J.; Kruliš, Z.; Kotek, J.; Šlouf, M. Strong Synergistic Effects in PLA/PCL Blends: Impact of PLA Matrix Viscosity. J. Mech. Behav. Biomed. Mater. 2017, 69, 229–241. DOI: 10.1016/j.jmbbm.2017.01.015.
  • Razavi, M.; Wang, S. Q. Why is Crystalline Poly (Lactic Acid) Brittle at Room Temperature? Macromolecules. 2019, 52, 5429–5441. DOI: 10.1021/acs.macromol.9b00595.
  • Kaiser, M. R.; Anuar, H.; Razak, S. Ductile–Brittle Transition Temperature of Polylactic Acid-Based Biocomposite. J. Thermoplast. Compos. Mater. 2013, 26, 216–226. DOI: 10.1177/0892705711420595.
  • Lee, C.; Pang, M. M.; Koay, S. C.; Choo, H. L.; Tshai, K. Y. Talc Filled Polylactic-Acid Biobased Polymer Composites: Tensile, Thermal and Morphological Properties. SN Appl. Sci. 2020, 2, 1–6. DOI: 10.1007/s42452-020-2172-y.
  • Semba, T.; Kitagawa, K.; Ishiaku, U. S.; Hamada, H. The Effect of Crosslinking on the Mechanical Properties of Polylactic Acid/Polycaprolactone Blends. J. Appl. Polym. Sci. 2006, 101, 1816–1825. DOI: 10.1002/app.23589.
  • Huda, M. S.; Drzal, L. T.; Misra, M.; Mohanty, A. K. Wood-Fiber-Reinforced Poly(Lactic Acid) Composites: Evaluation of the Physicomechanical and Morphological Properties. J. Appl. Polym. Sci. 2006, 102, 4856–4869. DOI: 10.1002/app.24829.
  • Rezgui, F.; Swistek, M.; Hiver, J. M.; G'Sell, C.; Sadoun, T. Deformation and Damage upon Stretching of Degradable Polymers (PLA and PCL). Polymer (Guildf). 2005, 46, 7370–7385. DOI: 10.1016/j.polymer.2005.03.116.
  • Yeh, J. T.; Wu, C. J.; Tsou, C. H.; Chai, W. L.; Chow, J. D.; Huang, C. Y.; Chen, K. N.; Wu, C. S. Study on the Crystallization, Miscibility, Morphology, Properties of Poly(Lactic Acid)/Poly(ε-Caprolactone) Blends. Polym. - Plast. Technol. Eng. 2009, 48, 571–578. DOI: 10.1080/03602550902824390.
  • Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization Behavior of Poly(ε-Caprolactone)/Layered Double Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. DOI: 10.1002/app.
  • Maglio, G.; Migliozzi, A.; Palumbo, R.; Immirzi, B.; Volpe, M. G.; Chimica, D.; Ii, F. Compatibilized Poly (ε-Caprolactone)/Poly (L-Lactide) Blends for Biomedical Uses. Macromol. Rapid Commun. 1999, 238, 236–238.
  • Chavalitpanya, K.; Phattanarudee, S. Poly (Lactic Acid)/Polycaprolactone Blends Compatibilized with Block Copolymer. Energy Procedia. 2013, 34, 542–548. DOI: 10.1016/j.egypro.2013.06.783.
  • Wu, D.; Zhang, Y.; Zhang, M.; Yu, W. Selective Localization of Multiwalled Carbon Nanotubes in Poly(ε-Caprolactone)/Polylactide Blend. Biomacromolecules. 2009, 10, 417–424. DOI: 10.1021/bm801183f.
  • Zhao, X.; Luo, J.; Fang, C.; Xiong, J. Investigation of Polylactide/Poly(ε-Caprolactone)/Multi-Walled Carbon Nanotubes Electrospun Nanofibers with Surface Texture. RSC Adv. 2015, 5, 99179–99187. DOI: 10.1039/C5RA14301B.
  • Wu, C. S.; Liao, H. T. Study on the Preparation and Characterization of Biodegradable Polylactide/Multi-Walled Carbon Nanotubes Nanocomposites. Polymer (Guildf). 2007, 48, 4449–4458. DOI: 10.1016/j.polymer.2007.06.004.
  • Papageorgiou, G. Z.; Terzopoulou, Z.; Achilias, D. S.; Bikiaris, D. N.; Kapnisti, M.; Gournis, D. Biodegradable Poly(Ethylene Succinate) Nanocomposites. Effect of Filler Type on Thermal Behaviour and Crystallization Kinetics. Polymer (Guildf). 2013, 54, 4604–4616. DOI: 10.1016/j.polymer.2013.06.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.