53
Views
1
CrossRef citations to date
0
Altmetric
Articles

In-Vitro Degradation Behaviors of Composite Scaffolds Based on Poly(Lactide-co-Glycolide-co-ε-Caprolactone), 1,4-Butanediamine Modified Poly(Lactide-co-Glycolide) and Bioceramics

, &
Pages 776-787 | Received 11 May 2022, Accepted 06 Jul 2022, Published online: 27 Jul 2022

References

  • Yousefi, A.-M.; Hoque, M. E.; Prasad, R. G. S. V.; Uth, N. Current Strategies in Multiphasic Scaffold Design for Osteochondral Tissue Engineering: A Review. J Biomed Mater Res A 2015, 103, 2460–2481. DOI: 10.1002/jbm.a.35356.
  • Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D. S. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polym. Sci 2011, 2011, 1–19. DOI: 10.1155/2011/290602.
  • Stevens, M. M. Biomaterials for Bone Tissue Engineering. Mater. Today 2008, 11, 18–25. DOI: 10.1016/S1369-7021(08)70086-5.
  • Peng, Z.; Zou, T. In-Vitro Degradation Behaviors of Composite Scaffolds Based on 1,4-Butadnediamine Modified Poly(Lactide-co-Glycolide) and Nanobioceramics. J. Macromol. Sci., Part B, Phys. 2019, 58, 505–517. DOI: 10.1080/00222348.2019.1593601.
  • Wu, S.; Deng, L.; Hsia, H.; Xu, K.; He, Y.; Huang, Q.; Peng, Y.; Zhou, Z.; Peng, C. Evaluation of Gelatin-Hyaluronic Acid Composite Hydrogels for Accelerating Wound Healing. J. Biomater. App. 2017, 31, 1380–1390. DOI: 10.1177/0885328217702526.
  • Shi, G.-S.; Li, Y.-Y.; Luo, Y.-P.; Jin, J.-F.; Sun, Y.-X.; Zheng, L.-Z.; Lai, Y.-X.; Li, L.; Fu, G.-H.; Qin, L.; Chen, S.-H. Bioactive PLGA/Tricalcium Phosphate Scaffolds Incorporating Phytomolecule Icaritin Developed for Calvarial Defect Repair in Rat Model. J. Orthop. Translat. 2020, 24, 112–120. DOI: 10.1016/j.jot.2020.05.008.
  • Wu, W.; Zhou, Z. H.; Liu, W. J.; Zhao, Y. H.; Zhao, Y. M.; Huang, T. L.; Li, X. F.; Fang, J. J. Preparation and in-Vitro Degradation Behavior of Poly(L-Lactide-co-Glycolide-co-ε-Caprolactone) Terpolymer. J. Macromol. Sci., Part B, Phys. 2019, 58, 568–577. DOI: 10.1080/00222348.2019.1601809.
  • Bose, S.; Sarkar, N. Natural Medicinal Compounds in Bone Tissue Engineering. Trends Biotechnol. 2020, 38, 404–417. DOI: 10.1016/j.tibtech.2019.11.005.
  • Yi, M.; Zhou, Z.; Liu, W.; Huang, T.; Zhao, Y.; Chen, P.; Zhou, Z.; Wang, D.; Zhang, C.; Fang, J. In-Vitro Degradation Behaviors of Poly(L-Lactide-co-Glycolide-co-ε-Caprolactone) Microspheres. J. Macromol. Sci., Part B Phys. 2021, 60, 521–529. DOI: 10.1080/00222348.2021.1876975.
  • Zhao, D.; Zhu, T.; Li, J.; Cui, L.; Zhang, Z.; Zhuang, X.; Ding, J. Poly(Lactic-co-Glycolic Acid)-Based Composite Bone-Substitute Materials. Bioact. Mater. 2021, 6, 346–360. DOI: 10.1016/j.bioactmat.2020.08.016.
  • Zhou, Z.; Liu, L.; Liu, Q.; Yi, Q.; Zhao, Y.; Zeng, W.; Liu, X. Biological Assessment of Composite Materials Based on poly-L-Lactide and Bovine Bone. Int. J.Polym. Mater. Polym. Biomater. 2013, 62, 81–84. DOI: 10.1080/00222348.2012.672295.
  • Asghari, F.; Samiei, M.; Adibkia, K.; Akbarzadeh, A.; Davaran, S. Biodegradable and Biocompatible Polymers for Tissue Engineering Application: A Review. Artif. Cells Nanomed. Biotechnol. 2017, 45, 185–192. DOI: 10.3109/21691401.2016.1146731.
  • Tian, H. Y.; Tang, Z. H.; Zhuang, X. L.; Chen, X. S.; Jing, X. B. Biodegradable Synthetic Polymers: Preparation, Functionalization and Biomedical Application. Prog. Polym. Sci. 2012, 37, 237–280. [Database] DOI: 10.1016/j.progpolymsci.2011.06.004..
  • Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D. S.; Mehrotr, D. Polycaprolactone as Biomaterial for Bone Scaffolds: Review of Literature. J. Oral Biol. Craniofac. Res. 2020, 10, 381–388. DOI: 10.1016/j.jobcr.2019.10.003.
  • Zhang, Q.; Zhou, Z.; Peng, C.; Huang, T.; Liu, W.; Liu, Q.; Zhou, H.; Wang, W.; Yan, H. Preparation and Properties of Novel Maleated Poly (D, L-Lactide-co-Glycolide) Porous Scaffolds for Tissue Engineering. J. Macromol. Sci., Part B, Phys. 2017, 56, 505–515. DOI: 10.1080/00222348.2017.1330132.
  • Zhou, Z.; Huang, H.; Huang, T.; Peng, C.; Zhou, H.; Liu, Q.; Zeng, W.; Liu, L.; Cao, D.; He, S.; et al. Synthesis and Characterization of Novel Maleated Poly(D,L-Lactide-co-Glycolide) by Direct Melt Copolymerization. Polym. Bull. 2015, 72, 1531–1543. DOI: 10.1007/s00289-015-1354-z.
  • Yang, Y.; Fang, J.; Liu, W.; Zhao, Y.; Huang, T.; Cui, J.; Zhou, Z. In-Vitro Degradation Behavior and Biological Properties of a Novel Maleated Poly (D, L-Lactide-co-Glycolide) for Biomedical Applications. J. Macromol. Sci. Part B Phys. 2019, 58, 209–218. DOI: 10.1080/00222348.2018.1479026.
  • Cui, J.; Zhou, Z.; Yang, Y.; Liu, W.; Zhao, Y.; Peng, C.; Huang, T.; Zhou, H.; Liu, L.; Zhang, Q. Synthesis, Characterization, and Degradation Behaviors of Poly(D,L-Lactide-co-Glycolide) Modified by Maleic Anhydride and Ethanediamine. Int. J. Polym. Anal. Ch. 2017, 22, 575–586. DOI: 10.1080/1023666X.2017.1344819.
  • Zhang, Q.; Fang, J.; Liu, W.; Zhao, Y.; Huang, T.; Cui, J.; Yang, Y.; Zhou, Z. Synthesis and Characterization of Poly(D,L-Lactide-co-Glycolide) Modified by Maleic Anhydride and 1,4-Butanediamine. Int. J. Polym. Anal. Ch. 2018, 23, 474–482. DOI: 10.1080/1023666X.2018.1478618.
  • Hwang, S. W.; Lee, S. B.; Lee, C. K.; Lee, J. Y.; Shim, J. K.; Selke, S. E. M.; Soto-Valdez, H.; Matuana, L.; Rubino, M.; Auras, R. Grafting of Maleic Anhydride on Poly(L-Lactic Acid): Effects on Physical and Mechanical Properties. Polym. Test. 2012, 31, 333–344. DOI: 10.1016/j.polymertesting.2011.12.005.
  • Zhou, Z. W.; Zhou, Z. H.; Liu, W. J.; Huang, T. L.; Zhao, Y. M.; Chen, P.; Wang, D.; Fang, J. J. Preparation and Degradation Behaviors of Poly(L-Lactideco-Glycolide-co-ε-Caprolactone)/1,4-Butanediamine Modified Poly(Lactic-co-Glycolic Acid) Blend Film. J. Macromol. Sci., Part B, Phys. 2020, 59, 491–501. DOI: 10.1080/00222348.2020.1746027.
  • Gu, J.; Zhou, Z.; Huang, T.; Wu, W.; Liu, W.; Zhao, Y.; Chen, P.; Zhou, Z.; Wang, D.; Zhang, C.; et al. Preparation and Properties of Poly(D,L-Lactide-co-Glycolide-co-ε-Caprolactone)/1,4-Butanediamine Modified Poly(Lactide-co-Glycolide) Blend Porous Microspheres. J. Macromol. Sci., Part B, Phys. 2022, 61, 270–280. DOI: 10.1080/00222348.2021.2002457.
  • Niu, X. F.; Luo, Y. F.; Li, Y. G.; Fu, C. H.; Chen, J.; Wang, Y. L. Design of Bioinspired Polymeric Materials Based on Poly(D,L-Lactic Acid) Modifications towards Improving Its Cytocompatibility. J. Biomed. Mater. Res. A 2008, 84, 908–916. DOI: 10.1002/jbm.a.31360.
  • Zhou, Z.; He, S.; Ou, B.; Huang, T.; Zeng, W.; Liu, L.; Liu, Q.; Chen, J.; Zhao, Y.; Yang, Z.; Cao, D. Influence of Nano-Bioactive Glass (NBG) Content on Properties of Gelatin-Hyaluronic Acid/NBG Composite Scaffolds. J. Macromol. Sci., Part B, Phys. 2014, 53, 1145–1155. DOI: 10.1080/00222348.2014.895610.
  • Peter, M.; Binulal, N. S.; Soumya, S.; Nair, S. V.; Furuike, T.; Tamura, H.; Jayakumar, R. Nanocomposite Scaffolds of Bioactive Glass Ceramic Nanoparticles Disseminated Chitosan Matrix for Tissue Engineering Applications. Carbohyd. Polym. 2010, 79, 284–289. DOI: 10.1016/j.carbpol.2009.08.001.
  • Alizadeh-Osgouei, M.; Li, Y.; Wen, C. A Comprehensive Review of Biodegradable Synthetic Polymer-Ceramic Composites and Their Manufacture for Biomedical Applications. Bioact. Mater. 2019, 4, 22–36. DOI: 10.1016/j.bioactmat.2018.11.003.
  • Kikuchi, M.; Koyama, Y.; Takakuda, K.; Miyairi, H.; Shirahama, N.; Tanaka, J. In-Vitro Change in Mechanical Strength of β-Tricalcium Phosphate/Copolymerized poly-L-Lactide Composites and Their Application for Guided Bone Regeneration. J. Biomed. Mater. Res. 2002, 62, 265–272. DOI: 10.1002/jbm.10248.
  • Wu, W.; Fang, J. J.; Liu, W.; Zhao, Y. H.; Huang, T. L.; Zhao, Y. M.; Li, X. F.; Cui, J. L.; Yang, Y.; Zhou, Z. H. Preparation and Properties of BMPLGA/NBAG-β-TCP Composite Scaffold Materials. Int. J. Polym. Anal. Ch. 2018, 23, 710–720. DOI: 10.1080/1023666X.2018.1499275.
  • Zhou, Z.; Xiang, L.; Ou, B.; Huang, T.; Zhou, H.; Zeng, W.; Liu, L.; Liu, Q.; Zhao, Y.; He, S.; Huang, H. Biological Assessment in-Vivo of Gel-HA Scaffold Materials Containing Nano-Bioactive Glass for Tissue Engineering. J. Macromol. Sci., Part A, Pure Appl. Chem. 2014, 51, 572–576. DOI: 10.1080/10601325.2014.916178.
  • Yang, C.; Unursaikhan, O.; Lee, J.-S.; Jung, U.-W.; Kim, C.-S.; Choi, S.-H. Osteoconductivity and Biodegradation of Synthetic Bone Substitutes with Different Tricalcium Phosphate Contents in Rabbits. J. Biomed. Mater. Res. 2014, 102, 80–88. [Database] DOI: 10.1002/jbm.b.32984..
  • Zhou, Z.; Huang, H.; Huang, T.; Peng, C.; Ou, B.; Zhou, H.; Zeng, W.; Liu, Q.; Yang, M.; Xiang, L.; He, S. Influences of Molecular Weight and Content of Polyethylene Glycol on Morphology and Size of Nano-Bioactive Glass. J. Macromol. Sci., Part A, Pure Appl. Chem. 2014, 51, 522–527. DOI: 10.1080/10601325.2014.906268.
  • Kang, Y.; Yao, Y.; Yin, G.; Huang, Z.; Liao, X.; Xu, X.; Zhao, G. A Study on the in Vitro Degradation Properties of Poly(l-Lactic Acid)/b-Tricalcuim Phosphate(PLLA/β-TCP) Scaffold under Dynamic Loading. Med. Eng. Phys. 2009, 31, 589–594. DOI: 10.1016/j.medengphy.2008.11.014.
  • Ebrahimian-Hosseinabadi, M.; Ashrafizadeh, F.; Etemadifar, M.; Venkatraman, S. S. Preparation and Mechanical Behavior of PLGA/nano-BCP Composite Scaffolds during in-Vitro Degradation for Bone Tissue Engineering. Polym. Degrad. Stab. 2011, 96, 1940–1946. DOI: 10.1016/j.polymdegradstab.2011.05.016.
  • Xie, H.; Zhou, Z.; Liu, W.; Zhao, Y.; Huang, T.; Chen, P.; Zhou, Z.; Wang, D.; Duan, J.; Fang, J. Preparation and Characterization of Poly(L-Lactide-co-Glycolide-co-ε-Caprolactone)/Nano-Biaoactive Glass-Nano-β-Tricalcium Phosphate Composite Scaffolds. J. Macromol. Sci., Part B, Phys. 2020, 59, 415–425. DOI: 10.1080/00222348.2020.1735122.
  • Liu, X.; Ma, P. X. Polymeric Scaffolds for Bone Tissue Engineering. Ann. Biomed. Eng. 2004, 32, 477–486. DOI: 10.1023/B:ABME.0000017544.36001.8e.
  • Melnik, E. V.; Shkarina, S. N.; Ivlev, S. I.; Weinhardt, V.; Baumbach, T.; Chaikina, M. V.; Surmeneva, M. A.; Surmenev, R. A. In Vitro Degradation Behaviour of Hybrid Electrospun Scaffolds of Polycaprolactone and Strontium-Containing Hydroxyapatite Microparticles. Polym. Degrad. Stab. 2019, 167, 21–32. DOI: 10.1016/j.polymdegradstab.2019.06.017.
  • Quintana, R. M.; Jardine, A. P.; Grechi, T. R.; Grazziotin-Soares, R.; Ardenghi, D. M.; Scarparo, R. K.; Soares, G. F.; Poli, K. P. M. Bone Tissue Reaction, Setting Time, Solubility, and pH of Root Repair Materials. Clin. Oral Investig. 2019, 23, 1359–1366. DOI: 10.1007/s00784-018-2564-1.
  • Zhou, Z.; Yi, Q.; Liu, X.; Liu, L.; Liu, Q. In Vitro Degradation Behaviors of Poly-L-Lactide/Bioactive Glass Composite Materials in Phosphate-Buffered Solution. Polym. Bull. 2009, 63, 575–586. DOI: 10.1007/s00289-009-0149-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.