180
Views
1
CrossRef citations to date
0
Altmetric
Articles

Chitosan/Gelatin/Starch-Based Films Plasticized with Olive Oil and Aloe-Vera Extract as a Potential Wound Dressing

&
Pages 1172-1185 | Received 09 Apr 2022, Accepted 17 Oct 2022, Published online: 15 Nov 2022

References

  • Nair, L. S.; Laurencin, C. T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • Boateng, J. S.; Matthews, K. H.; Stevens, H. N.; Eccleston, G. M. Wound Healing Dressings and Drug Delivery Systems: A Review. J. Pharm. Sci. 2008, 97, 2892–2923. DOI: 10.1002/jps.21210.
  • Chen, J.-P.; Chang, G.-Y.; Chen, J.-K. Electrospun Collagen/Chitosan Nanofibrous Membrane as Wound Dressing. Colloid Surf. A 2008, 313-314, 183–188. DOI: 10.1016/j.colsurfa.2007.04.129.
  • Rujitanaroj, P-o.; Pimpha, N.; Supaphol, P. Wound-Dressing Materials with Antibacterial Activity from Electrospun Gelatin Fiber Mats Containing Silver Nanoparticles. Polymer 2008, 49, 4723–4732. DOI: 10.1016/j.polymer.2008.08.021.
  • Sahana, T. G.; Rekha, P. D. Biopolymers: Applications in Wound Healing and Skin Tissue Engineering. Mol. Biol. Rep. 2018, 45, 2857–2867. DOI: 10.1007/s11033-018-4296-3.
  • Shah, S. A.; Sohail, M.; Khan, S.; Minhas, M. U.; de Matas, M.; Sikstone, V.; Hussain, Z.; Abbasi, M.; Kousar, M. Biopolymer-Based Biomaterials for Accelerated Diabetic Wound Healing: A Critical Review. Int. J. Biol. Macromol. 2019, 139, 975–993. DOI: 10.1016/j.ijbiomac.2019.08.007.
  • Balakrishnan, B.; Mohanty, M.; Umashankar, P. R.; Jayakrishnan, A. Evaluation of an in-Situ Forming Hydrogel Wound Dressing Based on Oxidized Alginate and Gelatin. Biomaterials 2005, 26, 6335–6342. DOI: 10.1016/j.biomaterials.2005.04.012.
  • Adekogbe, I.; Ghanem, A. Fabrication and Characterization of DTBP-Crosslinked Chitosan Scaffolds for Skin Tissue Engineering. Biomaterials 2005, 26, 7241–7250. DOI: 10.1016/j.biomaterials.2005.05.043.
  • Jin, J.; Song, M. Chitosan and Chitosan–PEO Blend Membranes Crosslinked by Genipin for Drug Release. J. Appl. Polym. Sci. 2006, 102, 436–444. DOI: 10.1002/app.24110.
  • Yin, L.; Ding, J.; He, C.; Cui, L.; Tang, C.; Yin, C. Drug Permeability and Mucoadhesion Properties of Thiolated Trimethyl Chitosan Nanoparticles in Oral Insulin Delivery. Biomaterials 2009, 30, 5691–5700. DOI: 10.1016/j.biomaterials.2009.06.055.
  • Jayakumar, R.; Prabaharan, M.; Sudheesh Kumar, P. T.; Nair, S. V.; Tamura, H. Biomaterials Based on Chitin and Chitosan in Wound Dressing Applications. Biotechnol. Adv. 2011, 29, 322–337. DOI: 10.1016/j.biotechadv.2011.01.005.
  • Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S. V.; Tamura, H. Biomedical Applications of Chitin and Chitosan Based Nanomaterials—A Short Review. Carbohydr. Polym. 2010, 82, 227–232. DOI: 10.1016/j.carbpol.2010.04.074.
  • Sahoo, D.; Sahoo, S.; Mohanty, P.; Sasmal, S.; Nayak, P. L. Chitosan: A New Versatile Bio-Polymer for Various Applications. Des. Monomers Polym. 2009, 12, 377–404. DOI: 10.1163/138577209x12486896623418.
  • Liu, X.; Ma, L.; Mao, Z.; Gao, C. Chitosan-Based Biomaterials for Tissue Repair and Regeneration. In Jayakumar, R., Prabaharan, M., Muzzarelli, R. (eds) Chitosan for Biomaterials II. Advances in Polymer Science, vol 244. Springer, Berlin, Heidelberg, 2011. DOI: 10.1007/12_2011_118.
  • No, H. K.; Meyers, S. P.; Prinyawiwatkul, W.; Xu, Z. Applications of Chitosan for Improvement of Quality and Shelf Life of Foods: A Review. J. Food Sci. 2007, 72, R87–100. DOI: 10.1111/j.1750-3841.2007.00383.x.
  • Chien, P.-J.; Sheu, F.; Yang, F.-H. Effects of Edible Chitosan Coating on Quality and Shelf Life of Sliced Mango Fruit. J. Food Eng. 2007, 78, 225–229. DOI: 10.1016/j.jfoodeng.2005.09.022.
  • Oh, D. X.; Hwang, D. S. A Biomimetic Chitosan Composite with Improved Mechanical Properties in Wet Conditions. Biotechnol. Prog. 2013, 29, 505–512. DOI: 10.1002/btpr.1691.
  • Bourtoom, T.; Chinnan, M. S. Preparation and Properties of Rice Starch–Chitosan Blend Biodegradable Film. LWT - Food Sci. Technol. 2008, 41, 1633–1641. DOI: 10.1016/j.lwt.2007.10.014.
  • Jridi, M.; Hajji, S.; Ayed, H. B.; Lassoued, I.; Mbarek, A.; Kammoun, M.; Souissi, N.; Nasri, M. Physical, Structural, Antioxidant and Antimicrobial Properties of Gelatin-Chitosan Composite Edible Films. Int. J. Biol. Macromol. 2014, 67, 373–379. DOI: 10.1016/j.ijbiomac.2014.03.054.
  • Chen, F.; Monnier, X.; Gällstedt, M.; Gedde, U. W.; Hedenqvist, M. S. Wheat Gluten/Chitosan Blends: A New Biobased Material. Eur. Polym. J. 2014, 60, 186–197. DOI: 10.1016/j.eurpolymj.2014.09.007.
  • Kim, S.; Nimni, M. E.; Yang, Z.; Han, B. Chitosan/Gelatin-Based Films Crosslinked by Proanthocyanidin. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 75, 442–450. DOI: 10.1002/jbm.b.30324.
  • Rubentheren, V.; Ward, T. A.; Chee, C. Y.; Tang, C. K. Processing and Analysis of Chitosan Nanocomposites Reinforced with Chitin Whiskers and Tannic Acid as a Crosslinker. Carbohydr. Polym. 2015, 115, 379–387. DOI: 10.1016/j.carbpol.2014.09.007.
  • Chen, A. H.; Liu, S. C.; Chen, C. Y.; Comparative Adsorption of Cu(II), Zn(II), and Pb(II) Ions in Aqueous Solution on the Crosslinked Chitosan with Epichlorohydrin. J. Hazard. Mater. 2008, 154, 184–191. DOI: 10.1016/j.jhazmat.2007.10.009.
  • Xu, Y.; Qiu, C.; Zhang, X.; Zhang, W. Crosslinking Chitosan into H3PO4/HNO3-NANO2 Oxidized Cellulose Fabrics as Antibacterial-Finished Material. Carbohydr. Polym. 2014, 112, 186–194. DOI: 10.1016/j.carbpol.2014.05.054.
  • Ashori, A.; Bahrami, R. Modification of Physico-Mechanical Properties of Chitosan-Tapioca Starch Blend Films Using Nano Graphene. Polym.-Plast. Technol. 2014, 53, 312–318. DOI: 10.1080/03602559.2013.866246.
  • Akhavan-Kharazian, N.; Izadi-Vasafi, H. Preparation and Characterization of Chitosan/Gelatin/Nanocrystalline Cellulose/Calcium Peroxide Films for Potential Wound Dressing Applications. Int. J. Biol. Macromol. 2019, 133, 881–891. DOI: 10.1016/j.ijbiomac.2019.04.159.
  • Antoniou, J.; Liu, F.; Majeed, H.; Qi, J.; Yokoyama, W.; Zhong, F. Physicochemical and Morphological Properties of Size-Controlled Chitosan–Tripolyphosphate Nanoparticles. Colloid Surf. A 2015, 465, 137–146. DOI: 10.1016/j.colsurfa.2014.10.040.
  • Toivonen, M. S.; Kurki-Suonio, S.; Schacher, F. H.; Hietala, S.; Rojas, O. J.; Ikkala, O. Water-Resistant, Transparent Hybrid Nanopaper by Physical Cross-Linking with Chitosan. Biomacromolecules 2015, 16, 1062–1071. DOI: 10.1021/acs.biomac.5b00145.
  • Jaipan, P.; Nguyen, A.; Narayan, R. J. Gelatin-Based Hydrogels for Biomedical Applications. MRS Comm. 2017, 7, 416–426. DOI: 10.1557/mrc.2017.92.
  • Tunde-Akintunde, T. Y.; Akintunde, B. O. Some Physical Properties of Sesame Seed. Biosyst. Eng. 2004, 88, 127–129. DOI: 10.1016/j.biosystemseng.2004.01.009.
  • Jan, K. C.; Ho, C. T.; Hwang, L. S. Elimination and Metabolism of Sesamol, a Bioactive Compound in Sesame Oil, in Rats. Mol. Nutr. Food Res. 2009, 53 Suppl 1, S36–S43. DOI: 10.1002/mnfr.200800214.
  • Singh, V. K.; Banerjee, I.; Agarwal, T.; Pramanik, K.; Bhattacharya, M. K.; Pal, K. Guar Gum and Sesame Oil Based Novel Bigels for Controlled Drug Delivery. Colloids Surf. B Biointerfaces 2014, 123, 582–592. DOI: 10.1016/j.colsurfb.2014.09.056.
  • Periasamy, S.; Chien, S. P.; Chang, P. C.; Hsu, D. Z.; Liu, M. Y. Sesame Oil Mitigates Nutritional Steatohepatitis via Attenuation of Oxidative Stress and Inflammation: A Tale of Two-Hit Hypothesis. J. Nutr. Biochem. 2014, 25, 232–240. DOI: 10.1016/j.jnutbio.2013.10.013.
  • Ernst, E. The Efficacy of Herbal Medicine–an Overview. Fundam. Clin. Pharmacol. 2005, 19, 405–409. DOI: 10.1111/j.1472-8206.2005.00335.x.
  • Ejele, A. E.; Njoku, P. C. Anti-Sickling Potential ofAloe Vera Extract. J. Sci. Food Agric. 2008, 88, 1482–1485. DOI: 10.1002/jsfa.3036.
  • Uslu, İ.; Aytimur, A. Production and Characterization of Poly(Vinyl Alcohol)/Poly(Vinylpyrrolidone) Iodine/Poly(Ethylene Glycol) Electrospun Fibers with (Hydroxypropyl)Methyl Cellulose and Aloe Vera as Promising Material for Wound Dressing. J. Appl. Polym. Sci. 2012, 124, 3520–3524. DOI: 10.1002/app.35525.
  • Shakib, Z.; Shahraki, N.; Razavi, B. M.; Hosseinzadeh, H. Aloe Vera as an Herbal Medicine in the Treatment of Metabolic Syndrome: A Review. Phytother. Res. 2019, 33, 2649–2660. DOI: 10.1002/ptr.6465.
  • Boudreau, M. D.; Beland, F. A. An Evaluation of the Biological and Toxicological Properties of Aloe Barbadensis (Miller), Aloe Vera. J. Environ. Sci. Health. C Environ. Carcinog. Ecotoxicol. Rev. 2006, 24, 103–154. DOI: 10.1080/10590500600614303.
  • ASTM. Standard Test Method for Water Vapor Transmission of Materials (E96-05). ASTM International, Philadelphia, PA, USA, 2005.
  • ASTM. Standard Test Method for Tensile Properties of Thin Plastic Sheeting (D882-09). ASTM International, Philadelphia, PA, USA, 2009.
  • CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th ed., CLSI Document M02-A11. Clinical and Laboratory Standards Institute, Wayne, PA, 2012.
  • Grela, E.; Kozłowska, J.; Grabowiecka, A. Current Methodology of MTT Assay in bacteria - A Review. Acta Histochem. 2018, 120, 303–311. DOI: 10.1016/j.acthis.2018.03.007.
  • Fotakis, G.; Timbrell, J. A. In Vitro Cytotoxicity Assays: comparison of LDH, Neutral Red, MTT and Protein Assay in Hepatoma Cell Lines following Exposure to Cadmium Chloride. Toxicol. Lett. 2006, 160, 171–177. DOI: 10.1016/j.toxlet.2005.07.001.
  • Peng, Y.; Li, Y. Combined Effects of Two Kinds of Essential Oils on Physical, Mechanical and Structural Properties of Chitosan Films. Food Hydrocolloid 2014, 36, 287–293. DOI: 10.1016/j.foodhyd.2013.10.013.
  • Müller, C. M. O.; Yamashita, F.; Laurindo, J. B. Evaluation of the Effects of Glycerol and Sorbitol Concentration and Water Activity on the Water Barrier Properties of Cassava Starch Films through a Solubility Approach. CarbohydR. Polym. 2008, 72, 82–87. DOI: 10.1016/j.carbpol.2007.07.026.
  • Sengupta, R.; Bhattacharya, M.; Bandyopadhyay, S.; Bhowmick, A. K. A Review on the Mechanical and Electrical Properties of Graphite and Modified Graphite Reinforced Polymer Composites. Prog. Polym. Sci. 2011, 36, 638–670. DOI: 10.1016/j.progpolymsci.2010.11.003.
  • Izadi-Vasafi, H.; Ghayoumi, F.; Karbasizadeh-Esfahani, S.; Ghafghazi, M. Comparing the Effect of Sodium-Based and Calcium-Based Crosslinkers on the Swelling, Mechanical and Rheological Properties of Chitosan/Gelatin/Starch Films. J. Macromol. Sci. Part B. Phys. 2020, 59, 331–343. DOI: 10.1080/00222348.2020.1714854.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.